ISSN: 0973-7510

E-ISSN: 2581-690X

Research Article | Open Access
Mahdiyeh Saadati, Mustafa Ozkan Baltaci, Ahmet Adiguzel and Orhan Erdogan
Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey.
Article Number: 9237 | © The Author(s). 2024
J Pure Appl Microbiol. 2024;18(2):1326-1335. https://doi.org/10.22207/JPAM.18.2.56
Received: 02 January 2024 | Accepted: 22 May 2024 | Published online: 02 June 2024
Issue online: June 2024
Abstract

Proteins are essential for the proper functioning of cells. The techniques of cloning and protein production have facilitated the advancement of various fields and the creation of specific proteins for industrial and therapeutic uses. The bacterium Aeribacillus pallidus, which is able to survive in extreme conditions, is being studied with a view to identifying its robust enzymes. The objective of this study was to clone the protease gene from the A. pallidus P18 strain into the SUMO vector and produce recombinant protein in Escherichia coli BL21 for protein production. The protease enzyme gene from the A. pallidus P18 strain was isolated and amplified by using PCR. The PCR product was transferred into the SUMO expression vector and amplified in One Shot® Mach1TM-T1R bacteria, followed by colony PCR. Plasmid isolation was performed after positive colony selection. Gene integration was confirmed by cross-PCR using the gene forward, and vector reverse primers. For expression, the plasmid was transferred to E. coli BL21 cells. Two cultures were induced with different IPTG concentrations (0.5 mM and 1 mM) to optimize protein production. Bacterial cells were lysed, and SDS-PAGE analysis was conducted. Purification involved cell lysate preparation and purification using a ProbondTM column. SDS-PAGE and Coomassie Brilliant Blue G-250 staining confirmed successful purification. The results of this study indicate that the optimal product for protein production is that derived from a culture induced with 1 mM IPTG. Upon completion of the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) procedure, the weight mass of the produced protein was determined to be 37 kDa, as indicated by the result of the gel stained with Coomassie brilliant blue G-250. This research successfully cloned the protease enzyme gene from the A. pallidus P18 strain using the pET-SUMO vector, performed purification and achieved the targeted result of protein production.

Keywords

Protease Enzyme, Cloning, Protein Production, Aeribacillus pallidus P18

Article Metrics

Article View: 123

Share This Article

© The Author(s) 2024. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License which permits unrestricted use, sharing, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.