The profound impacts of global changes on biodiversity necessitate a more comprehensive documentation, particularly at the microscale level. To achieve precise and rapid insights into this unique diversity, the choice of an ideal species candidate is crucial. Neurospora crassa, a well-established organism in the field of biology, emerges as a promising candidate for this purpose. In our study, we explore the potential of the Carboxypeptidase A1 (CPA1) enzyme as a valuable tool for profiling global diversity. Our investigation has revealed that CPA1 possesses distinctive characteristics, notably its conserved solvent accessibility. This unique feature makes CPA1 an invaluable asset for microscale studies of global changes. The insights presented in our study serve as a practical blueprint, showcasing the application of structural biology in understanding diversity and global changes within microscale environments.
Neurospora crassa, Protease (Carboxypeptidase A1), Protein Modeling, Computational Analysis, Biodiversity
© The Author(s) 2024. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License which permits unrestricted use, sharing, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.