ISSN: 0973-7510

E-ISSN: 2581-690X

Research Article | Open Access
Harshitkumar J. Savalia and Arvindkumar Dungrechiya
Department of Microbiology & Biogas Research Center, Faculty of Science & Applied Sciences, Gujarat Vidyapith, Sadra, Gandhinagar, Gujarat, India.
Article Number: 7841 | © The Author(s). 2022
J Pure Appl Microbiol. 2022;16(4):2592-2600. https://doi.org/10.22207/JPAM.16.4.27
Received: 15 May 2022 | Accepted: 03 September 2022 | Published online: 27 October 2022
Issue online: December 2022
Abstract

Bio-deteriorated waste is the leftover organic matter of unwanted raw food which if not handled properly or left for natural degradation can cause health issues. Microorganisms have the ability to biodegrade waste by secreting enzymes. The aim of the work was to isolate and identify lipase-producing bacteria from waste polluted (Bio-deteriorated waste and Municipal Solid Waste) dumping sites of Gandhinagar, Gujarat, India. Lipase-producing bacteria were isolated using tributyrin agar as a selective medium. Out of 7 bacterial isolates, 1 isolate (HAL-2) gave the highest lipolytic activity. HAL-2 was identified as Bacillus pumilus by 16S rRNA sequencing. The bacterial isolate gave maximum lipase activity (0.68 U/mL) at 37°C and pH 7.0 Culture medium parameters such as carbon source, nitrogen source, pH, and inoculum size were varied for the purpose of optimization. The maximum lipase production was observed at pH 7.0, 37°C temperature. Inoculum size had an effect of direct proportionality on lipase activity. Glycerol tributyrate was found to be the best substrate (0.68 U/mL). Sucrose and Tryptone in the medium increased enzyme production when compared with other carbon and nitrogen sources.

Keywords

Bio-deteriorated Waste, Screening, Lipase Producing Bacteria, 16S rRNA Gene Sequencing, Optimization Study

Article Metrics

Article View: 534

Share This Article

© The Author(s) 2022. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License which permits unrestricted use, sharing, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.