ISSN: 0973-7510

E-ISSN: 2581-690X

Research Article | Open Access
Meraj Fatima and K. Anuradha
Department of Microbiology, Bhavans Vivekananda College of Sciences, Humanities and Commerce, Sainikpuri, Secundrabad – 500 094, Telangana, India.
J Pure Appl Microbiol. 2022;16(2):1039-1048 | Article Number: 7484
https://doi.org/10.22207/JPAM.16.2.28 | © The Author(s). 2022
Received: 10/12/2021 | Accepted: 01/04/2022 | Published online: 17/05/2022
Issue online: June 2022
Abstract

Recent concern for human safety and environmental protection has rekindled interest in natural pigment sources. In comparison to synthetic pigments, microbial pigments show better biodegradability and environmental compatibility and are used in a variety of applications ranging from food to cosmetics. The areas of attention for economical pigment synthesis include the identification of novel microbiological sources and improvement of process parameters. The purpose of this research was to screen and identify microbial isolates capable of generating pigments with antimicrobial activity from a variety of soil samples. A total of six pigment-producing bacterial sps were able to isolate from various soil samples such as bore well digging sites, river shores, river beds, forest areas, dumping yards using the enrichment culture technique. All the isolates were morphologically and biochemically identified as Micrococcus sp producing two-color pigments i.e., yellow and orange, Serratia sp producing red and pink color pigments, Salinococcus sp producing orange color pigment, and Exiguobacterium sp producing yellow color pigment respectively. During optimization studies maximum pigment production was observed at pH 7, agitation at 90 rpm (rotations per minute) and 120 rpm, the temperature of 30°C and 37°C, inoculum size up to 2% with NaCl concentration of 2%, 4%, and 6% respectively. Optimization of nutritional parameters such as carbon source and nitrogen source it was found that glucose (1%) and yeast extract (0.1%) work the best. Extraction of the pigment from the fermented broth was done by solvent-solvent extraction method. UV-Visible spectrophotometry and Silica gel Thin-layer chromatography was used to detect the presence of carotene and prodigiosin in the extracted bacterial pigment. The crude bacterial pigments were tested for antimicrobial activity against clinical pathogens including E. coli, Klebsiella sp, Bacillus sp, Staphylococcus sp, and pseudomonas sp respectively. Among all the isolates, pigments of Micrococcus sp and Salinococcus sp showed comparatively good results. Further purification of the pigment will lead to discovering a promising drug in the pharmaceutical industry.

Keywords

Microbial pigments, Carotene, optimization, antimicrobial activity

Article Metrics

Article View: 700

Share This Article

© The Author(s) 2022. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License which permits unrestricted use, sharing, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.