ISSN: 0973-7510

E-ISSN: 2581-690X

Research Article | Open Access

Dhaliwal Maninder Kaur , Raghunath N. Patil and Ansari Saima

Department of Microbiology, B.K. Birla College, Kalyan – 421 304, M.S., India.
J Pure Appl Microbiol. 2020;14(2):1337-1343 | Article Number: 6262
https://doi.org/10.22207/JPAM.14.2.30 | © The Author(s). 2020
Received: 13/04/2020 | Accepted: 05/05/2020 | Published: 11/06/2020
Abstract

Biosurfactants are surface active compounds, which may be of microbial, animal or plant origin. They are typically less toxic and less persistent than the synthetically derived surfactants. The current study intended to analyze the biosurfactants production and its antagonistic activity against Candida albicans biofilm formation. Isolation of biosurfactant producing organism was carried out using swab sample of human vagina and from oil contaminated soil samples. Isolates were screened for biosurfactant production by using oil spread assay and the organisms showing higher activity were selected. The Emulsification assay was done and the E24 was found to be 20.83% for cell free extract of growth medium of isolate B1.The selected isolates were further studied for yield of biosurfactant produced by cultivation in MRS broth and extraction by chloroform and methanol (3:1) extraction. The yield of biosurfactant for isolate B1was found to be4.55gl-1.Theextracted biosurfactant was separated by TLC and identified to be a lipopeptide by FTIR spectroscopy. The isolate with maximum yield of biosurfactant was identified as Lactobacillus fermentum using VITEK II Compact System for microbial identification system. The percentage biofilm inhibition activity of the biosurfactant was studied by CFU assay followed by adhesion assay and by pre-coating experiment. On the basis of above studies, it concludes that use of biosurfactant producing organism can be effective weapon against colonizing opportunistic C. albicans and can be applied in medical devices for inhibition of biofilms formation. Microbial adhesion also decreased from 85% to 11% with78.125 to 2500 µg/ml of biosurfactant. The lipopeptide extracted from isolated isolate B1 also showed powerful penetration capacity in the biofilm and killed 91% C. albicans as seen by CFU assay and a highest inhibition at 2500µg/ml and 1250µg/ml concentration as studied by pre-coating experiment.

Keywords

Biosurfactant, Candida albicans, anti-biofilm activity, lipopeptide

Article Metrics

Article View: 225
PDF Download: 43

Share This Article

© The Author(s) 2020. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License which permits unrestricted use, sharing, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.