Dudi Hardianto*, Juwartina Ida Royani and Anna Safarrida

Agency for the Assessment and Application of Technology, LAPTIAB Building, Puspiptek Area, 15314, Indonesia.


Cephalosporins are the β-lactam antibiotics for the treatment of infection diseases caused by gram-positive and gram-negative bacteria. Fungus Cephalosporium acremonium produces cephalosporin C (CPC) that is not potent for clinical use. Its molecule can be transformed to 7-amino cephalosporanic acid (7-ACA) as the intermediate compound for making semi-synthetic cephalosporin derivatives. The first method for production of 7-aminocephalosporanic acid involves the chemical reaction using toxic reagents and laborious procedures. The second method uses two-step and one-step enzymatic transformation. In two-step method, the first step involves the conversion of Ceph-C to Glutaryl-7-amino cephalosporanic acid (GL-7-ACA) by D-amino acid oxidase (DAAO) and the second step, GL-7-ACA acylase (GA) hydrolyzes GL-7- ACA to produce 7-ACA. The two-step enzymatic transformation was used widely because of its safety and environmental friendship. The one-step enzymatic transformation is developed because of process simplification and cost reduction. This method uses cephalosporin C acylase for transformation CPC to 7-ACA. Same microbes can produce cephalosporin C acylase such as Achromobacter xylosoxidans, Aeromonas sp., Arthrobacter viscosus, Bacillus laterosporus, Flavobacterium sp., Paecilomyces sp., and Pseudomonas sp.  The natural of cephalosporin C acylase catalyzed the CPC to 7-ACA directly in a very low efficiency and the protein engineering of cephalosporin C acylase was used to increase activity.

Keywords: Cephalosporin C, 7-aminocephalosporanic acid, D-amino acid oxidase, GL-7-ACA acylase, cephalosporin C acylase, Cephalosporium acremonium.