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Abstract
In this study, considering the vital biological importance of the Alongshan virus NS3-like helicase 
enzyme, several machine learning and artificial intelligence-based software and servers were used to 
identify compounds that exhibited the best binding affinity for the helicase enzyme. The predicted 
compounds were MSID000152, MSID000165, MSID000200, AfroDb.28, and AfroDb.207 with binding 
energy scores of -9.7, -9.5, -9.4, -8.65, and -8.01 kcal/mol, respectively. Because static intermolecular 
confirmation is not highly valued in terms of docked stability, the results were validated through 
molecular dynamics simulation analysis within 100 ns. The MSID000152, MSID000165, and MSID000200 
showed significant uniform dynamics with root mean square deviation (RMSD) values of <3 Å. The 
intermolecular interaction energies were estimated using two well-known methods: MMPBSA and 
WaterSwap. Both methods agreed regarding the appreciated intermolecular strength of the leads with 
the helicase enzyme. Van der Waals interactions were identified to be the dominant force in stabilizing 
the ligands with the helicase enzyme in all complexes. Similarly, the electrostatic energy supported the 
stable intermolecular conformation of the docked complexes. The selected compounds were drug-like 
and exhibited good pharmacokinetic properties.
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INTRODUCTION

 Viral infections cause millions of deaths 
worldwide. The Alongshan virus is a single-
stranded RNA virus belonging to the Flaviviridae 
family that has been identified in tick-biting 
patients and Ixodes persulcatus in northeast China.1 
Subsequently, the Alongshan virus was identified 
in sheep and cattle in endemic regions. The clinical 
manifestation of the Alongshan virus is reminiscent 
of those of other tick-borne viruses that cause 
nonspecific febrile diseases. Notably, Alongshan 
fever, caused by Alongshan viral infection, is 
characterized by several clinical symptoms, 
including fever, headache, coma, exhaustion, 
depression, nausea, myalgia, arthralgia, and rash.2 
Its genome has been segmented and classified 
within the Jingmenvirus family of Flaviviridae. 
The virus is tagged as an emerging virus, and its 
spread across countries poses potential threats to 
human health and healthcare systems; therefore, 
a detailed study of the genome-encoded proteins 
of this virus from a therapeutic perspective is vital.3

 The genome of the Alongshan virus 
was divided into four segments, designated as 
segments 1-4. The total genome size is similar 
to that of other flaviviruses.4 Segment 1 encodes 
the flavivirus NS5 protein, which comprises an 
RNA-dependent RNA polymerase enzyme and 
methyltransferase motifs, whereas segment 2 
encodes the product of the NS2b-NS3 complex, 
which contains an RNA helicase motif and 
proteinase.5 Segments 2 and 4 are expressed as 
VP1-3 proteins. The NS3 protein of flaviviruses is 
among the most studied nonstructural proteins 
because it plays a vital role in viral replication.6 
This enzyme is a key component of the replication 
complex in the membrane and exhibits various 
enzymatic activities.7 The enzyme contains an 
N-terminal domain (designated as the protease 
domain) and a C-terminal domain (designated as 
the RNA helicase domain). The proteinase domain 
is involved in polyprotein processing, whereas the 
RNA helicase domain is involved in RNA synthesis 
and capping.5 The NS3 helicase enzymes from 
different viruses have been reported to have 
a similar structural fold, a similar mechanism 
regarding RNA recognition and unwinding, and 
adenosine triphosphate (ATP) hydrolysis. Owing to 

the key involvement of the NS3 helicase enzyme in 
the biology of the Alongshan virus, it is a promising 
target of small drug molecules that may block its 
enzymatic function.8

 Computer-aided drug design (CADD) 
is an integral part of modern drug discovery 
for predicting target-ligand interactions and 
is essential in understanding drug safety for 
therapeutic use.9 CADD allows the screening 
of tens of thousands of compounds to identify 
molecules with special effects on the target 
enzyme. Over the years, CADD technology has 
progressed significantly and has been divided into 
ligand-based drug design (LBDD) and structure-
based drug design (SBDD).10 The integration 
of artificial intelligence and machine learning 
with CADD has recently attracted considerable 
attention for accomplishing specific tasks.11 AI 
algorithms are widely used in CADD to predict 
protein three-dimensional (3D) structures, docking 
scoring functions, de novo drug design, prediction 
of synthetic accessibility, and synthetic routes.12 
Several drugs, including captopril, oseltamivir, 
dorzolamide, rupintrivir, and zanamivir, have 
been successfully developed using CADD.13 In the 
present study, several CADD techniques based 
on machine learning and AI principles were used 
to identify drug molecules from natural sources 
that showed stable binding conformations with 
the NS3 helicase enzyme of the Alongshan virus. 
The virtual screening process identified the best-
docked complexes, which were then validated 
through molecular dynamics simulation analysis.14 
MD simulations allowed us to decipher complex 
time-dependent dynamics and investigate ligand-
binding stability. Furthermore, the intermolecular 
binding free energies were determined using 
different approaches to determine the dominant 
interaction energies.15,16 Finally, the drug-likeness 
and pharmacokinetic properties of the selected 
compounds were evaluated to improve the clinical 
and developmental efficacy of the drugs and 
reduce production time and costs.17

MATERIALS AND METHODS

The overall flow of methods used to identify drug 
molecules targeting NS3-like helicase enzymes is 
shown in Figure 1.
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NS3-like helicase structure preparation
 The crystal structure of the NS3-like 
helicase enzyme of the Alongshan virus was 
downloaded from the Protein Data Bank (PDB) 
(https://www.rcsb.org/).18 This etching step was 
completed by entering a four-digit code, “6M4O”, 
in the search box of the PDB database.5 The 
selected structure was expressed in the Escherichia 
coli BL21 strain and no mutations were reported. 
The structure was deposited in the PDB database 
on 05-03-2020 and released on 08-04-2020. The 
structure was resolved using X-ray diffraction 
(XRD) at a resolution value of 2.89 Å. The structure 
has a one-ampere chain and a sequence length 
of 489 bp. The enzyme structure entered the 
preparation phase, where it was energy-minimized 
using the steepest descent and conjugate gradient 
algorithms.19 Both algorithms were applied to 

the structure in 1000 steps. During this process, 
missing hydrogen atoms were added and charges 
were assigned using the Gasteiger method. After 
this process, the obtained structure was saved in 
PDB format. 

Ligands library preparation 
 Different drug libraries were used 
in this study, including AfroDB,20 Medicinal 
Fungi Secondary Metabolites and Therapeutics 
(MeFSAT),21 and PSC-db.22 AfroDB (https://zinc12.
docking.org/pbcs/afronp) is a structurally diverse 
database containing >1000 compounds from 
African medicinal plants that have been shown to 
exhibit a range of biological activities. In addition, 
the catalog of the ZINC database includes natural 
products originating from various geographic 
regions in Africa. MeFSAT (https://cb.imsc.res.

Figure 1. Flow of the designed materials and methods sections employed to achieve the study objectives by 
identifying drug molecules against NS3-like helicase enzyme from Alongshan virus. The flow is divided into four phases 
i.e. target selection of NS3-like helicase enzyme from Alongshan virus, preparation phase involving preparation of 
target and drug libraries, biophysics phase which involves structure-based virtual screening, molecular dynamics 
simulation and MM-PBSA analysis, and ADMET analysis phase
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in/mefsat/) comprises secondary metabolites 
from 184 medicinal fungi. The Plant Secondary 
Compound Database (PSCDB;) contains 2853 PSCs 
that can be screened for bioactivity against various 
disease targets.22 The database classifies all the 
compounds into nine subfamilies: (1) polyketides, 
(2) phenylpropanoids, (3) flavonoids, (4) amino 
acid-related compounds, (5) acetate-malonate 
pathway (6) alkaloids, (7) terpenoids, (8) fatty 
acid-based compounds and (9) others. All library 
compounds were imported into PyRx 0.8, where 
they were energy-minimized using an MM2 force 
field.23 The compounds were then converted to 
the PDBQT format. 

Virtual screening process
 Virtual screening is an important 
foundation in any drug discovery process as 
it identifies potential therapeutic compounds 
that can be used as novel inhibitors of the 
pathophysiology of the disease. The structure-
based virtual screening of the drug libraries 
described above was performed against the 
fully active pockets available on the surface of 
the NS3-like helicase enzyme using the PyRx 0.8 
software.24 During the screening process, the grid 
box was set on the receptor enzyme at the X-axes, 
Y-axes, and Z-axes with dimensions values of 38.79, 
38.57, and 73.40 Å, respectively. The box size in 
each direction was adjusted to 49.40, 62.20, and 
67.21 Å, respectively. Fifty binding conformations 
were obtained for each ligand during the virtual 
screening. Furthermore, selective side-chain 
residue flexibility can increase the accuracy of 
the Vina docking score without appreciably 
increasing the processing time. Therefore, 
AutoDock Vina uses the selective side-chain 
residue flexibility option, which provides a more 
realistic ligand-protein interaction environment 
without significantly increasing the computer 
processing time.25 The lowest energy (kcal/mol) 
binding modes were filtered as the best binding 
conformation and selected for visualization. In 
addition, 6-(3,5-diaminophenyl)-1-[4-(propan-
2-yl)benzyl]-1H-indol-3-yl acetic acid was used 
as a control. UCSF Chimera 1.17 was used to 
study the intermolecular binding of the receptor-
ligand complexes, whereas Discovery Studio 
Visualizer 2021 was used to investigate the binding 
interactions.26,27

MD simulation
 Only the top complexes were used 
in MD simulation analysis to understand the 
intermolecular binding conformation dynamics 
of the receptors and ligands.28 AMBER 22 program 
was used for the analysis.29 Complex files were 
prepared using Antechamber software. FF19SB 
was selected as the force field to describe the 
parameters of the NS3-like helicase enzyme, 
whereas organic ligands were treated with a gaff 2 
force field.30 Energy minimization of the complexes 
was performed in 1000 steps with applied 
constraints.31 The complexes were submerged in 
an oxygen atom carries water box, followed by 
the addition of 12 Na+ ions.32 The complexes were 
then heated slowly to 310 K (through Langevin 
dynamics) while keeping the volume box fixed and 
equilibrated in the isothermal-isobaric ensemble 
at 1 atm for 100 ps.33 The production run was 
completed within 100 ns in the NPT ensemble,34 
simulation trajectories were generated and 
analyzed using the CPPTRAJ module,35 and 
the plots for different statistical analyses were 
constructed using XMGRACE v. 5.1.36

Calculation of binding-free energies
 The binding free energies of the simulated 
complexes were determined using the Poisson-
Boltzmann surface area (PBSA) method of 
molecular mechanics (MM) implemented using 
AMBER v22. This procedure was performed using 
the MMPBSA.py module.37 PalmTop files for the 
receptor, ligand, and complex were obtained using 
the Ante-MMPBSA. py module. The MM-PBSA 
approach is considered a significant approach in 
modern drug discovery because of its usefulness in 
estimating the contribution of different energies to 
protein-ligand interactions.38 MM-PBSA splits the 
binding energy into the polar solvation, nonpolar 
solvation, and vacuum potential energies.39 The 
solvation energy terms were computed using 
solvent-accessible surface areas (SASA) and 
Poisson-Boltzmann equations.

 ∆G binding = ∆G (vacuum energy) + ∆G (solvation energy)

 From the simulation trajectories, 1000 
frames were selected across the simulation time 
and split into equal time intervals.
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Table 1. Selected five compounds considering their lowest binding energy with the NS3-like helicase enzyme

Compound Structure SMILES Binding 
   Energy in 
   kcal/mol

MSID000152  CC(=C)C1(O)CCC2(C)C(CCC(=C)C23CC4=
  C(CC(OC4=O)C5=C[NH+]=CC=C5)O3) -9.7
  C16CCC(=O)OC6

MSID000165  CC1C(=O)CC(O)C2C1(C)CCC3C2(C)CCC4(C)
  C5CC(C)(C)CCC5(C)CCC34C -9.5

MSID000200  CC(CC(O)CC(=C)C(O)=O)C1CC(=O)C2(C)C3=C
  (C(=O)CC12C)C4(C)CCC(=O)C(C)(C)C4CC3=O -9.4

AfroDb.28  CC1CCC23CC2CC(CO)CC34CC14CC5CC56C7CC
  89CC8%10C9C(CC(=O)C -8.65

AfroDb.207  CC1=C(O)C(=CC2=C1CC=C3C4(C)CCC56CC5CC
  (CO)CC67CC47CC8CC238)O -8.01

Control  6-(3,5-diaminophenyl)-1-[4-(propan-2-yl)
  benzyl]-1H-indol-3-yl acetic acid -8.62
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Figure 2. The docked complexes obtained after the virtual screening process. The intermolecular docked pose 
of NS3-like helicase enzyme with high-affinity compounds is given. The enzyme is shown by a tan cartoon with 
three domains labeled. The RNA binding site where all the docked compounds preferred to bind is zoom-in. The 
MSID000152, MSID000165, and MSID000200 are shown by yellow, blue, and magenta stick. Further, the atomic 
level interactions are also provided

Normal mode entropy calculations
 The entropy energy of each complex 
was calculated to elucidate the free energy 
of the complexes further and reveal the real 
intermolecular binding energy.40 This was achieved 
using the AMBER normal-mode entropy method, 
which was applied to selected simulation frames. 
Five frames were selected from each complex for 
the entropy analysis. 

WaterSwap calculations of absolute binding free 
energy
 The intermolecular binding affinities of 
the docked complexes were further validated using 
the WaterSwap absolute binding energy method.41 
This method uses Monte Carlo simulation, which 
facilitates the absolute binding free energy of 
docked complexes. Furthermore, this procedure 
calculates the binding energy through free energy 
perturbation (FEP), thermodynamic integration 
(TI), and Bennett.42 The consensus of these 
energies was determined by calculating the 
arithmetic means. 

Prediction of Drug-likeness and absorption, 
distribution, metabolism, excretion, and toxicity 
(ADMET) properties 
 The SwissADME server (http://www.
swissadme.ch/), which predicts the drug-like 
features and pharmacokinetic properties of small 
selected compounds, was used to predict the drug-
likeness of prodigiosin based on several criteria, 
including the Lipinski rule of five,43 Ghose,44 Egan,45 
Veber46 and Muegge rules.47 The SMILES format 
of prodigiosin was retrieved from the ChEMBL 
database (https://www.ebi.ac.uk/chembl/) and 
used as the input.
 PkCSM was used to predict the ADMET 
properties of the selected compounds, as well 
as their carcinogenicity, solubility, and other 
pharmacokinetic properties.48,49

RESULTS AND DISCUSSION

Identification of lead compounds 
 Structure-based virtual screening is 
an in silico method used in the early drug 
discovery process to identify novel bioactive 
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molecules in drug libraries against a specific 
drug biomolecule target.16,50 This method uses 
a biological receptor target in a 3D structure 
(obtained through experimental or computational 
molecular modeling techniques).14 A drug library 
or several other drug libraries was then docked to 
the receptor active site, and the binding energy 
score for each compound in the library was 
computed.19 Next, a subset of the best-docking 
compounds was used for biological evaluation. 
As a result, the process provided selected 
compounds for experimental testing and thus 
saves time, resources, and money for the biological 
assessment of complete drug libraries.34 In this 
work, the virtual screening process identified the 
five best-docked compounds with the NS3-like 
helicase enzyme from the Alongshan virus, which 
are listed in Table 1.
 T h e s e  c o m p o u n d s  a r e  l a b e l e d 
MSID000152, MSID000165, MSID000200, 
AfroDb.28, and AfroDb.207 with docking binding 

energy scores of -9.7, -9.5, -9.4, -8.65, and -8.01 
kcal/mol, respectively. All compounds showed 
preferential binding to the helicase enzyme RNA-
binding site, revealing a stable binding-interacting 
network. Binding of the compounds occurred 
at the interface of domains D1 and D2. Recent 
studies have identified compounds that target viral 
enzymes associated with infectious diseases using 
computational approaches. Singh et al. showed 
the potential of ribavirin, levovirin, and ribamidine 
as effective inhibitors of the tick-borne encephalitis 
virus, with the lowest docking energies indicating 
strong binding affinity to the NS3 helicase.50 Ejeh 
et al. performed structure-based virtual screening 
to identify novel ketoamide compounds as 
potential inhibitors of HCV NS3/4A proteases.51 
Rehman et al. used a similar in silico approach to 
identify the natural compounds that target the 
NS3 protease of the dengue virus and revealed 
that three compounds, cyanidin 3-glucoside (L22), 
dithymoquinone (L25), and glabridin (L28), had the 

Figure 3. Molecular dynamics simulation analyses. (A). Rg, (B). RMSD, (C). RMSF and (D). SASA
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strongest binding affinities, with binding energies 
ranging -8 to -7 kcal/mol.52

 C h e m i c a l l y ,  M S I D 0 0 0 1 5 2  i s 
5-(2-(3-hydroxy-4-methylpent-4-en-1-yl)-6-
methylene-4’-oxo-3-(6-oxotetrahydro-2H-pyran-
3-yl)-3',4',6',7'-tetrahydrospiro [cyclohexane-
1,2’-furo[3,2-c]pyran]-6’-yl)-1,2-dihydropyridin-
1-ium and forms a network of hydrophobic 
interactions with the enzyme, especially 
through its 5-(2-(3-hydroxy-4-methylpent-4-
en-1-y l ) -6-methy lene-4 ’ -oxo-3 ' ,4 ' ,6 ' ,7 ' -
tetrahydrospiro[cyclohexane-1,2’-furo[3,2-c]
pyran]-6’-yl)-1,2-dihydropyridin-1-ium chemical 
region. Hydrophobic interactions were formed 
with Thr376, Glu576, Val441, Ile574, Ser573, 
Lys550, Ser548, Thr572, Pro521, Gly522, Thr524, 
Tyr593, and Gln592. The chemical moiety 

(tetrahydro-2H-pyran-2-one) of the compound 
forms a strong hydrogen bond with Leu523 
at a distance of 1.67 Å. MSID000165, which is 
chemically 1-hydroxy-4,4a,6b,8a,11,11,12b,14a-
octamethylicosahydropicen-3(2H)-one, was 
ranked second. The compound formed hydrogen 
bonds with Gln592 and Pro521 at distances of 1.87 
and 2.23 Å, respectively. Hydrophilic interactions 
form in the chemical region of 5-hydroxy-2,3-
dimethylcyclohexanone. The remaining compound 
(1-ethyl-2,4a,6,6,8a,10a-hexamethyltetradecahyd
rophenanthrene) formed hydrophobic bonds with 
Ile574, Arg549, Ser548, Lys550, Ser573, Thr572, 
Tyr593, Gly522, Leu523, and Thr524. MSID000200 
is chemically 4-hydroxy-2-methylene-6-(4,4,10,13, 
14-pentamethyl -3,7,11,15-tetraoxo-2,3, 
4,5,6,7,10,11,12,13,14,15, 16,17-tetradecahydro-

Table 2. Binding interactions energies of docked complexes based on 1000 frames of simulation trajectories 

Parameter Control MSID000152 MSID000165 MSID000200

MMGBSA
Van der Waals Energy (kcal/mol) -30.51 -36.01 -34.02 -32.08
Columbic Energy (kcal/mol) -8.60 -10.10 -9.31 -8.21
Total Gas Phase Energy (kcal/mol) -39.11 -46.11 -43.33 -40.29
Total Solvation Energy (kcal/mol) 8.82 10.56 9.63 8.47
Net Energy (kcal/mol) -30.29 -35.55 -33.7 -31.82

MMPBSA
Van der Waals Energy (kcal/mol) -30.51 -36.01 -34.02 -32.08
Columbic Energy (kcal/mol) -8.60 -10.10 -9.31 -8.21
Total Gas Phase Energy (kcal/mol) -39.11 -46.11 -43.33 -40.29
Total Solvation Energy (kcal/mol) 7.94 10.68 8.58 7.95
Net Energy (kcal/mol) -31.17 -35.43 -34.7 -32.34

The values are expressed in kcal/mol

Table 3. Evaluation of control and selected inhibitory compounds in drug-likeness by SwissADME

Drug Rule Control MSID000152 MSID000165 MSID000200

Lipinski Rule of Five Yes; 0 violation Yes; 0 violation Yes; 1 violation:  Yes; 0 violation
   MLOGP>4.15
Ghose Yes No; 2 violations:  No; 3 violations:  No; 3 violations: 
  MW>480, MR> WLOGP>5.6, MR> MW>480, MR>130, 
  130 130, #atoms>70 #atoms>70
Veber Yes; 0 violation Yes Yes Yes
Egan Yes; 0 violation Yes No; 1 violation:  Yes
   WLOGP>5.88
Muegge Yes; 0 violation Yes No; 1 violation:  Yes
   XLOGP3>5
Bioavailability Score 0.56 0.55 0.55 0.56
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Figure 4. Binding entropy results obtained through AMBER normal mode analysis. The values are presented in 
kcal/mol

1H-cyclopenta [a]phenanthren-17-yl) heptanoic 
acid. The methacrylic acid ring of the compound 
was the most stable in terms of its interaction 
with the key residues of the enzyme. It produced 
strong hydrogen bonds with Thr650 and Val649 
at distances of 2.36 and 2.97 Å. respectively. 
Intermolecular docked snapshots of the complexes 
are shown in Figure 2.

Statistical analyses based on simulation 
trajectories 
 The dynamics of each complex were 
investigated within 100 ns to decipher the 
physical movements of the receptor enzyme in the 
presence of the screened inhibitors.53 All analyses 
were performed based on the carbon atoms of 
the receptor. The first analysis was the radius 
of gyration (Rg), which determines whether the 
receptor enzyme structure is compact or relaxed 
within the specified simulation time.54 A higher 
Rg value indicates a relaxed protein structure, 
whereas a lower Rg value indicates a compact 
protein structure. In the presence of these 
compounds, a higher Rg may lead to detachment 
of the compounds from the binding site and can 
thus be confirmed as a low-affinity binder. All 
the lead complexes, including the control, had 
lower Rg values, although some small local-level 
deviations were observed. The mean Rg values 

of MSID000152, MSID000165, MSID000200, and 
the control were 22.87, 24.01, 25.62, and 26.75, 
respectively (Figure 3A). The control complex 
exhibited major deviations that were attributed 
to the flexible loops of the enzyme. The control 
molecule was forced to behave more flexibly than 
the shortlisted leads. The lead molecules exhibited 
a more stable intermolecular conformation with 
the enzyme. The next analysis performed was the 
RMSD (Figure 3B).55 Similar trends were observed, 
with the control system being the most unstable 
and regular structural changes owing to the flexible 
loops. Among the lead systems, MSID000152 was 
the most stable, with a mean RMSD value of 0.95 
Å. The lead complex mean RMSD ranged 1.5-2.8 
Å, which signifies the high affinity of the inhibitors 
for the receptor helicase enzyme. Local changes in 
the enzyme were observed because of the same 
flexible loop regions reported for the control; 
however, they were more conformationally 
stable in the presence of the selected inhibitory 
molecules. Similarly, potent inhibitors (cyanidin 
3-glucoside and dithymoquinone) of the dengue 
virus exhibited stable interactions with the 
NS2B-NS3 protease, as indicated by root mean 
square deviation RMSD values that ranged  
2.5-3.5 Å.52 When comparing our results with 
their research, it is notable that compounds 
explored in the current study have comparable 
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binding affinities and stability profiles. The above 
findings were confirmed through the root mean 
square fluctuation (RMSF), which indicates amino 
acid fluctuations versus time (Figure 3C).56 The 
control N-terminus showed high fluctuations 
compared to the lead systems. The N-terminus 
was the primary factor contributing to the high 
structural deviations in the control system. In in-
lead systems, this region is stable in the presence 
of inhibitory compounds. The mean RMSF values 
for MSID000152, MSID000165, MSID000200, 
and the control were 0.9 6, 1.12, 1.43, and 4.10 
Å, respectively. SASA analysis was performed to 
calculate the biomolecule surface accessible to 
water molecules (Figure 3D).56 Due to its relaxed 
nature, the control system is more exposed to 
interactions with water molecules than with 
inhibitor complexes. MSID000152 exhibited the 
lowest SASA scores among the lead systems. 

Calculation of binding-free energies 
 Docking calculations provide a static 
intermolecular snapshot of the docked complex, 
which is not considered reliable.57 Therefore, 
cross-validation of the predicted binding energies 

is required. The MMGBSA and MMPBSA methods 
are popular because they are based on a series 
of frames collected from simulated trajectories. 
These methods are more accurate than docking 
and are modest in terms of computational power. 
The results obtained in the present study using 
the MMGBSA and MMPBSA techniques support 
the strong intermolecular interactions between 
the docked compounds and the NS3-like helicase 
enzyme. The order of stability of the complexes 
was MSID000152 > MSID000165 > MSID000200 
> control. In MMGBSA, the net binding energies 
of MSID000152, MSID000165, MSID000200, and 
the control were -35.55, -33.7, -31.82, and -30.29 
kcal/mol, respectively. Similarly, the MMPBSA 
results revealed the net binding energies of the 
MSID000152, MSID000165, MSID000200, and 
control as -35.43, -34.7, -32.34, and -31.17 kcal/
mol, respectively. In each complex analyzed 
using MMGBSA and MMPBSA, the van der Waals 
interactions were identified as the dominant force 
in maintaining the docking of the compounds at the 
RNA-binding site of the enzyme. The net van der 
Waals interaction contribution in both MMGBSA 
and MMPBSA for MSID000152, MSID000165, 

Figure 5. WaterSwap energies produced by different algorithm applied in WaterSwap analysis. Each value is plotted 
in kcal/mol.
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MSID000200, and control was -36.01, -34.02, 
-32.08, and -30.51 kcal/mol, respectively. The 
contribution of columbic interaction energies was 
observed to be favorable in complex formations, 
such as -10.10 kcal/mol for MSID000152, -9.31 
kcal/mol for MSID000165, -8.21 kcal/mol for 
MSID000200, and -8.60 kcal/mol for the control. 
In contrast, the solvation free energy was noted 
to have a non favourable contribution to complex 
formation. These findings suggest that the 
selected lead molecules showed strong binding 
affinities for the enzyme in both static and dynamic 
environments. The full statistical values obtained 
using MMGBSA and MMPBSA are listed in  
Table 2. 

Binding entropy estimation
 The presence of random energies in 
the selected complexes may have displaced the 
docked ligands. Therefore, the estimation of the 
entropy energy is crucial. Because the entropy 
energy is time-consuming, only a limited number 
of frames were used during the calculation. 
The net binding entropy energies of the docked 
complexes are shown in Figure 4. These results 
were consistent with the MMGBSA and MMPBSA 
results. MSID000152 was the most stable complex 

with the lowest random binding entropy energy. 
The net binding entropy of this complex was 7.5 
kcal/mol. The net binding entropy energies of 
MSID000165 and MSID000200 were 11.2 and 
14.01, respectively. All three complexes reported 
the lowest binding entropy energies, illustrating 
that each complex possessed less entropy and, 
therefore, less freed energy. 

WaterSwap analysis 
 To support the experimental findings 
of this study thus far and revise the complex 
intermolecular stability and rich interaction 
pattern reported above, binding free energies 
were confirmed using the WaterSwap absolute 
binding free energy method.58 WaterSwap is a 
novel and sophisticated approach for swapping 
water clusters (present in the vicinity of the active 
pocket of the enzyme) with docked ligands. This 
allowed the computation of water molecules 
and their comparison with the ligand-binding 
energy. Water molecules also play a vital role in 
bridging ligands and enzyme-interacting residues. 
WaterSwap binding-energy analysis predicts the 
absolute binding energy using Bennetts, FEP, and 
TI algorithms. The WaterSwap results are shown 
in Figure 5. All the three complexes exhibited less 

Figure 6. Pharmacokinetic properties of compound MSID000152. 
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deviation (<1 kcal/mol) from the values obtained 
using the algorithms. The MSID000152 complex 
exhibited the most stable energies (TI: -41.64 kcal/
mol, FEP: -41.28 kcal/mol, and Bennetts: -41.25 
kcal/mol). 

Evaluation of drug-likeness of compounds
 Drug-likeness is vital because drugs with 
therapeutic effects often fulfill different drug-like 
rules and have higher oral absorption than non-
drug-like compounds.42 The SwissADME drug-
likeness of the compounds was evaluated, and 
the results are shown in Table 3. Five prominent 
rules were used to investigate compound drug 
likeness: Lipinski’s rule of five, and the Ghose, 
Veber, Egan, and Muegge rules. The control was 
disclosed to adhere to these rules, and thus, may 
be a good candidate for branding. Among the 
selected compounds, MSID000152 adhered to 
all rules except for the Ghose rule, for which it 
violated two parameters: molecular weight and 
molar refractivity. Similarly, MSID000165 violates 
the Veber rule and the remaining rules. In addition, 
MSID000200 violated the Ghose rule. Overall, the 
control and all the selected leads showed good 
bioavailability scores. 

Evaluation of pharmacokinetic properties
 The pharmacokinetic properties of 
selected compounds were determined. This 
analysis is vital for elucidating the ADMET of a 
compound. The pharmacokinetics of MSID000152, 
MSID000165, and MSID000200 are shown in Figure 
6, Supplementary Table 1, and Supplementary 
Table 2, respectively. The pharmacokinetic 
properties of high-affinity binders are presented in 
the main text. MSID000152 exhibited the highest 
intestinal absorption rate (97%). The compound 
exhibited a weak ability to cross the blood-brain 
barrier, and thus did not cause any adverse central 
nervous system side effects. The compound also 
showed no AMES or low minnow toxicity. The 
oral absorption of the compound was high; thus, 
a good magnitude of the drug reached the target 
side for therapeutic effect.59 This compound has 
no skin sensitization ability and is predicted to 
be easily cleared from the body. The remaining 
pharmacokinetic properties are shown in Figure 
6. Computational approaches have several 

limitations, including dependence on database 
accuracy and inherent presumptions of in silico 
models. Molecular docking and ADME predictions 
do not fully capture in vivo complexities.60 
Therefore, further experimental studies are 
required to validate the therapeutic potential of 
these inhibitors.

CONCLUSION

 This study used diverse biophysics-, 
machine learning-, and artificial intelligence-
supported servers and software to identify 
five novel natural inhibitors (MSID000152, 
MSID000165, MSID000200, AfroDb.28, and 
AfroDb.207) of NS3-like helicase enzymes from 
the Alongshan virus. The inhibitors showed a 
significant affinity for the RNA-binding site of the 
enzyme and revealed a strong and rich interaction 
network. Furthermore, the compounds showed 
stable dynamics, dominant van der Waals, and 
electrostatic interactions. The entropy energy 
of each complex is low; thus, it has a low-
disorder energy. These compounds are also good 
candidates because of their drug-likeness and 
pharmacokinetic properties. Therefore, these 
compounds can be used in different experimental 
biological tests to validate in silico predictions. 
This investigation is useful for understanding the 
binding affinities of NS3-like helicase inhibitors 
in the search for novel and better antiviral drugs 
against the Alongshan virus. Furthermore, the 
exploration of natural compounds and their 
interactions with viral enzymes has potential in the 
development of more effective antiviral therapies. 
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