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Abstract
The World Health Organization (WHO) has recognized antimicrobial resistance to be one of the 
top 10 threats to mankind in the coming future. Therefore, it requires solutions that are targeted, 
sustainable, and economically effective. Carbapenem-resistant Pseudomonas aeruginosa is associated 
with nosocomial infections affecting mostly patients with chronic lung disease. The goal of the current 
investigation was to gain insight into significant P. aeruginosa genes responsible for carbapenems, beta-
lactams, and other antimicrobials resistance through a systems biology approach. To proceed with the 
methodology, 866 genes were retrieved from the NDARO database and a gene interaction network 
of 45 genes and 195 functional partners was constructed using STRING v9.0 with high confidence 
and analyzed using Cytoscape 3.10.0. Using clustering analysis, four closely linked clusters (C1-C4) 
associated with mechanisms of multidrug-resistance were identified. The enrichment analysis revealed 
a substantial role for 43 genes in biological processes, 36 genes in molecular function, and 40 genes in 
cellular components. The gene interaction network analysis found that the genes oprD, oprM, oprN, 
mexR, nfxB, mexB, mexT, mexA, nalD, and nalC had the greatest number of gene interactions, which 
can be further used as potential drug targets for the development of novel therapeutics to manage 
the antimicrobial resistance associated with Pseudomonas aeruginosa. 
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INTRODUCTION

 Pseudomonas aeruginosa is an aerobic, 
Gram-negative bacterium that survives in habitats 
such as water, soil, and plants.1 According 
to the World Health Organisation (WHO), 
Carbapenem-resistant Pseudomonas aeruginosa 
has been identified to pose a severe threat to 
individuals with impaired immunity, especially 
diabetes and chronic lung disease. Along with 
the five other ESKAPE pathogens including 
Staphylococcus aureus, Enterococcus faecium, 
Klebsiella pneumonia, Enterobacter species 
and Acinetobacter baumannii, Pseudomonas 
aeruginosa have been identified as “critical” 
pathogens by WHO, which requires urgent 
attention for the development of sustainable 
therapeutics to tackle resistance mechanisms 
in them.2 Pseudomonas aeruginosa, being 
an opportunistic pathogen, infects immune-
compromised patients causing cystic fibrosis,3 
chronic obstructive pulmonary disorder2 along with 
aggravation of diabetic foot wounds in association 
with Staphylococcus aureus.4 This Gram-negative 
bacterium houses an extensive genome consisting 
of approximately 5.5 million to 7 million base 
pairs, which encodes regulatory enzymes crucial 
for the transportation, metabolism, and efflux 
of organic chemical compounds,5,6 responsible 
for its nutritional flexibility and adaptability to 
different environmental conditions.7 Several 
virulence factors, firstly, lipopolysaccharides in 
the outer cell membrane responsible for host cell 
attachment, recognition of antibiotics,2,8 secondly 
secretion systems most importantly T3SS secretion 
system which participates in escaping the host 
immune system,9 and third polysaccharides 
namely alginate, Psl, and Pel associated with 
biofilm formation, allows the bacteria to adapt and 
survive in the adverse environment in presence 
of antibiotics and other stresses.10 As a part of 
the intrinsic resistance mechanisms, the bacteria 
also possess several families of multi-drug efflux 
pump systems such as mexAB-oprM, mexXY-
oprM, mexCD-oprJ and mexEF-oprN belonging 
to resistance nodulation division (RND), PmpM 
belonging to multidrug and toxic compound 
extrusion (MATE) family, Mfs1 and Mfs2 of 
major facilitator superfamily (MFS) and others 
which contribute to resistance to antimicrobial 

compounds such as aminoglycosides, macrolides, 
carbapenems, antimicrobial peptides and beta-
lactams.11-14

 In addition to these intrinsic resistance 
mechanisms, the bacteria has also evolved 
to acquire mutations that enhance existing 
resistance mechanisms such as mutations in 
oprD gene leading to decreased expression 
or defect in oprD protein, thereby enhancing 
resistance to carbapenems antibiotics,15 gyrA, 
gyrB, parC, and parE mutations resulting to 
fluoroquinolone resistance,16 nfxB mutations 
leading to overexpression of mexCD-oprJ efflux 
pump thereby contributing to Ciprofloxacin 
resistance17 or involving mexXY induction and 
biofilm formation, resulting in modifications in the 
target gene or protein expression systems.5,18,19

 Currently, anti-quorum sensing, anti-
biofilm, and immuno-therapeutics are being 
investigated as alternative approaches to control 
Pseudomonas infections.20 In our previous study, 
a combination therapy containing recombinant 
Lactonase and antibiotics (fluoroquinolone 
and carbapenem) was developed targeting the 
quorum-sensing pathway.21 The main issue that 
exists while designing new antibacterial drugs is 
improving their accumulation within bacterial cells 
and enhancing the antibiotic efficacy in controlling 
the infections. This can be accomplished by 
enhancing antibiotic flow across the outer 
membrane, interfering with the regulatory 
genes, creating compounds that circumvent the 
efflux process effectively repurposing existing 
drugs as efflux pump inhibitors, or designing 
stable antimicrobial peptides. Previously, a group 
of researchers,22 had performed the systems 
biology approach to identify the potential genes 
responsible for antimicrobial resistance in 2019 
where they had identified oprJ, oprM, oprN, 
ampC, gyrA, mexA, oprD, mexB and nfxB genes 
to have shown maximum number of interactions 
in Pseudomonas aeruginosa PAO1 strain. In the 
present study, we focused on identifying the hub 
genes responsible for the antimicrobial resistance 
of P. aeruginosa, specifically not restricting to 
any strain to recognizing the target genes for the 
development of specific therapeutic targets to 
enhance the susceptibility of multidrug-resistance 
P. aeruginosa strains was done using clustering 
analysis. 
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MATERIALS AND METHODS

Collection of raw data from the NDARO database
 The National Database of Antibiotic 
Resistant Organisms (NDARO) is maintained by 
NCBI and serves as a central site for gathering 
and disseminating information about bacterial 
strains and their genes resistant and sensitive to 
antibiotics. After the removal of the duplicates, 
a total of 866 antimicrobial resistance genes of 
Pseudomonas aeruginosa were retrieved from 
the NDARO database. 

Protein-protein interaction using STRING v9.0 
database.
 A pre-computed database STRING v9.0 
was used to predict the physical and functional 
gene/protein relationships. STRING employs 
data selected from sources like experimental and 
published data, data mining, and co-expression 
study analysis. A confidence score or combination 
score has been assigned to each interaction. 
The total scores indicate the likelihood of the 
correlation based on the sources that the 
interaction selected. The total scores fall between 
0 and 1, with the lowest values denoting a lower 
likelihood of that specific relationship occurring 
and the highest values denoting a higher likelihood. 
Based on the confidence scores, interactions 
are characterized as low (0.15-0.39), medium  
(0.40-0.69), high (0.70-0.89), and highest  
(0.90-1.0) to obtain an optimum number of gene 
interactions and the network was visualized using 
Cytoscape 3.10.0. 

Network analysis and clustering analysis using 
Cytoscape
 Cytoscape 3.10.0 is a versatile software 
that provides multiple plugins to carry out detailed 
network analysis. One of the finest plugins of 
Cytoscape 3.10.0 is Network Analyser which helps 
in evaluating multiple topological variables such 
as nodes, edges, average shortest path length, 
betweenness centrality, and clustering coefficient. 
Whereas Cytoscape program’s Molecular Complex 
Detection (MCODE) software was used to detect 
the network’s highly interacting nodes. The method 
relies heavily on topology to establish clusters. 
The clusters were formed by identifying protein 
groupings with similar activities. It depended on 

vertex weighting, complicated prediction, and 
optimal post-processing by assigning weight to 
the vertex in local neighbourhood density from 
dense regions depending on a specific parameter. 
The collected clusters were scored based on their 
size and density.23 Numerous metrics, including 
the number of nodes, edges, average shortest 
path length, betweenness centrality, the average 
number of neighbours, and clustering coefficient 
of the individual network as well as the clusters 
were effectively calculated using the Network 
Analyser tool of Cytoscape 3.10.0. 

RESULTS

Retrieval of antimicrobial resistance genes of  
P. aeruginosa from NDARO database and STRING 
analysis
 National Database of Antimicrobial 
Resistance Organisms (NDARO) was used to 
retrieve the antimicrobial resistance (AMR) genes 
of Pseudomonas aeruginosa and a total of 866 
genes were obtained after the removal of the 
duplicates and AMR genes belonging to another 
Pseudomonas sp. from the list. These genes were 
queried for their protein sequences in the NCBI 
Protein database and UNIPROT database. The 
protein sequences were searched in the STRING 
v7.0 database to obtain the protein-protein 
interaction against Pseudomonas aeruginosa. Out 
of the 866 genes queried in the STRING database, 
we obtained interaction with 46 genes with high 
confidence (Confidence score = 0.70-0.89). A list 
of the top 10 genes with a maximum number of 
interactions along with their interaction partners 
is given in Table 1.

Network analysis using Cytoscape
 The protein-protein interactions obtained 
from the String database were visualized using 
Cytoscape 3.10.0 shown in Figure 1 and the 
network analysis was carried out using the 
Network analyzer tool of Cytoscape to obtain the 
topological parameters of the gene interaction 
which is given in Table 2. A dense interaction 
network with 45 nodes and 198 edges was 
obtained when we analyzed the interaction with 
high confidence followed by which clustering 
analysis was carried out using the MCODE tool 
of Cytoscape 3.10.0 given in Table 3. We have 
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obtained 4 clusters, C1, C2, C3, and C4 which are 
shown in Figure 2. After carrying out the network 
analysis on the clusters, we have found that out 
of the 45 genes, 23 genes were clustered with 10 
genes in Cluster 1 (score: 8.667), 7 genes in Cluster 
2 (score: 4.333), 3 genes in Cluster 3 (score: 3) and 
3 genes in Cluster 4 (score: 3). Network analysis 

of the entire network using the network analyzer 
resulted in 45 nodes, 198 edges with clustering 
coefficient 0.559 and network density 0.239. On 
the other hand, network analysis of the clusters 
revealed 10 nodes and 39 edges with an average 
number of neighbors of 7.8 for Cluster 1, 7 nodes, 
13 edges, and the average number of neighbours 

Table 1. List of top 10 genes with their interacting partners at high confidence scores

No. Target Interacting Partners
 Genes  (Confidence Score = 0.70-0.89)

1 oprM parE,parR,parC
2 mexA mexR, mexT, nfxB, nalC, oprD, nalD, oprN, oprJ, mexF, mexD, mexB, oprM
3 mexB mexR, mexT, nfxB, nalC, oprD, nalD, oprN, oprJ, mexE, mexC, oprM
4 mexR parE, oprD, mexT, oprN, oprJ, nalD, nfxB, nalC, parC, oprM
5 mexT oprM, oprD, parS, parC, oprJ, nfxB, nalC, nalD, oprN
6 nfxB oprM, oprD, oprN, oprJ, parE, parC
7 oprN parC
8 nalC oprM, oprD, oprN, nalD, oprJ, nfxB
9 nalD oprM, oprD, oprN, parC, nfxB, oprJ
10 oprD oprM, oprJ, parC, oprN

Figure 1. Gene interaction network of 46 genes of Pseudomonas aeruginosa as obtained from STRING v9.0 database 
and visualized using Cytoscape 3.10.0
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Figure 2. Clustering analyses of antimicrobial resistance genes of Pseudomonas aeruginosa using Cytoscape-MCODE 
tool. Of the 46 genes in the network, 10 were grouped into Cluster 1, 7 were in Cluster 2, and 3 were in Cluster 3 
and Cluster 4. The remaining 23 genes were ungrouped

Table 2. List of top 20 genes based on the topological parameters like degree, shortest path length, betweenness 
centrality, closeness centrality, and clustering coefficient

Gene Degree Average Betweenness Closeness Clustering
Name   Shortest Centrality Centrality Coefficient
  Path Length 

oprM 24 1.55 0.218715 0.645161 0.391304
oprN 17 1.875 0.026111 0.533333 0.566176
oprJ 17 1.875 0.026111 0.533333 0.566176
mexA 16 1.925 0.016607 0.519481 0.633333
mexB 17 1.8 0.027839 0.555556 0.632353
ampC 21 1.7 0.084808 0.588235 0.457143
mexR 18 1.8 0.016233 0.555556 0.640523
oprD 21 1.725 0.036374 0.57971 0.557143
gyrA 18 1.65 0.220247 0.606061 0.431373
nfxB 17 1.8 0.020869 0.555556 0.654412
parC 16 1.825 0.036069 0.547945 0.541667
mexT 16 1.8 0.078098 0.555556 0.625
nalD 12 2.075 0.002051 0.481928 0.833333
nalC 11 2.125 0.001506 0.470588 0.854545
PA2019 10 2.225 0.027126 0.449438 0.555556
mexF 10 2.075 0.003942 0.481928 0.711111
mexD 10 2.15 0.002886 0.465116 0.733333
PA2018 10 2.225 0.027302 0.449438 0.555556
mexR 18 1.8 0.016233 0.555556 0.640523
ampR 10 2.075 0.003766 0.481928 0.733333
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of 3.714 for Cluster 2, 3 nodes, 3 edges for Cluster 
3 and 4. Table 3 lists the topological parameters 
of the top 20 genes in the network obtained from 
network analysis based on their average shortest 
path length, closeness, betweenness centrality, 
degree, and clustering coefficient. 

Functional enrichment analysis 
 Gene Ontology (GO) terms and their 
annotations along with enriched KEGG pathways, 
UniProt keywords, and pFAM protein domains 
for the target genes and interaction partners 
were obtained from the STRING database with 
p-value ≤0.05 to understand the contribution of 
these AMR genes in molecular function (MF), 
biological processes (BP) or associating as a cellular 
component (CC) and others. Table 4 lists the 
genes enriched in biological process, molecular 
function, and cellular compartment, and Table 
5 lists the genes enriched in the KEGG pathway, 
UniProt keywords, and Pfam Protein families. 
Among the 45 genes, 43 genes were enriched in 
biological processes, 36 genes were enriched in 
molecular function, and approximately 40 genes 
in the cellular compartment, 22 genes in the KEGG 
pathway, 45 in Uniprot keywords, and 11 in the 
Pfam protein family.

DISCUSSION

 Pseudomonas aeruginosa is responsible 
for nosocomial infections in critical care patients 

or patients with low immunity. The prevalence 
of multidrug-resistant strains of P. aeruginosa 
has grown alarmingly in recent years. As per the 
Centres for Disease Control and Prevention’s 
statistics, 32,600 MDR P. aeruginosa infections 
were detected, resulting in 2,700 deaths in the 
United States in 2019.24 Antibiotic resistance-
related genes or proteins, as well as the gene 
networks that support them, are extremely 
important because they offer important insights 
into biological and molecular complexes and the 
signaling pathways of the genes that are thought 
to be responsible for the resistance.25 The present 
study identified 45 antimicrobial resistance gene 
interactions in P. aeruginosa which were found 
to be involved in cellular processes (41 genes), 
molecular function (10 genes), and KEGG pathway 
(3 genes). The analysis of the network and the 
clusters showed that the average shortest path 
length of the whole network was 2.17 which was 
reduced to 1.13 in Cluster 1 and 1.38 in Cluster 2 
along with average betweenness centrality ranging 
from 0.03 in the whole network to 0.01 in C1 but 
increased to 0.07 in C2. Betweenness centrality is 
calculated using the shortest path length whereas 
the average shortest path length calculates the 
shortest distance between the nodes and higher 
betweenness centrality and lower average shortest 
path length can impact the gene network and 
could be a therapeutic target.26-28

 The C1 cluster has a high degree of 
connectivity, with an average neighbour count 

Table 3. Topological parameters of the whole network and the clusters obtained through network analysis

No. Topological parameters Network    MCODE Cluster

   C1 C2 C3 C4

1 Number of Nodes 45 10 7 3 3
2 Number of Edges 198 39 13 3 3
3 Average number of neighbours 9.561 7.8 3.714  
4 Clustering co-efficient 0.559 0.899 0.614  
5 Network density 0.239 0.867 0.619  
6 Average Shortest path length 2.17 1.133333 1.380952
7 Average Betweenness Centrality 0.03 0.016667 0.07619
8 MCODE score - 8.667 4.333 3 3
9 Genes in the cluster - nalC, mexA,  parE, oprN,   ampR, ftsl,  fosA, cat, 
   mexT, mexR,  mexC, oprJ,   ampD aph
   nalD, nfxB,   oprM, ampC, 
   parC, gyrA,  mexE
   mexB, oprD
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of 7.8, meaning that every node in the network 
is connected to 8 additional nodes. The cluster 
C1 has a closeness centrality of 8.936364 and 
an average shortest path length of 1.133333. C1 
cluster consists of 10 genes (nalC, mexA, mexT, 
mexR, nalD, nfxB, parC, gyrA, mexB, oprD). mexB 
is a transmembrane protein with antiporter 
activity, whereas oprM is an outer membrane 
porin channel. The multidrug efflux system of 
P. aeruginosa is constitutively expressed by 
mexAB-oprM.29 mexB promotes the production 
of biofilms and its hyperexpression in conjunction 
with the increased efflux pump activity, enabling 
the bacteria to withstand antibiotic stresses and 
survive. Antibiotics such as aminoglycosides, 
beta-lactams, fluoroquinolones, macrolides, and 
carbapenems are consequently lodged out to 
the extracellular environment,30 which promotes 
bacterial growth and enhanced biofilm formation 
while impeding the would-healing process.31 The 
primary regulatory loci that control mexAB-oprM 
expression are mexR, nalC, and nalD. The gene 
mexR, which is present in the upstream region of 

the operon-mexAB-oprM, codes for a repressor 
protein. The repressor protein binds to the operon 
intergenic region and inhibit transcription by 
forming a stable homodimer. Overexpression 
mexAB-oprM is caused due to mexR gene 
mutations that impair the mexR protein’s capacity 
to dimerize and bind.32,33 The gene nalC produces 
the TetR family repressor protein nalC, which 
binds to armR operon. By blocking the mexR 
repressor, armR derepresses mexAB-oprM, acting 
as an anti-repressor.34,35 In addition, the secondary 
repressor, nalD, belonging to TetR family binds to 
a region close to the mexA promoter. Hence, nalD 
dysfunction leads to mexAB-oprM overexpression 
and leads to increased efflux of antibiotics.36 oprD is 
the second most prevalent and well-studied porin 
protein in P. aeruginosa and is responsible for 
carbapenem antibiotic penetration, particularly 
imipenem and meropenem. In biofilm outer 
membrane vesicles, oprD has been detected in 
large abundance. Carbapenem resistance-causing 
mutations have been linked to oprD expression 
downregulation.37,38 Pseudomonas pathogenicity is 

Table 4. List of the genes enriched in biological processes, molecular function and cellular components with GO IDs

No. Functional Enrichment Genes Involved

1 Biological Processes mexA, mexB, oprM, cat, fosA, pmpM, PA2018, PA2019, mexE, arr, PA3127, 
   arnB, arnA, PA3676, aph, oprJ, mexC, phoP, phoQ, parS, parR, PA2019, soxR,  
  PA3078, PA3127, ampC, PA4136, katA, katB, pmrB, PA4990, amgS, mexR,  
  PA2020, mexT, nalD, nalC, nfxB, gyrB, gyrA, parC, parE, ftsI, ampR, soxR, infB
2  Molecular Function mexB, oprM, PA2018, mexF, oprN, oprJ, mexD, PA4974, pmpM, PA3676,  
  PA4136, gyrB, gyrA, parC, parE, PA4990, glpT, mexE, PA4974, mexC, mexT,  
  nalD, nalC, nfxB, phoP, parR, soxR, ampR, gyrA, ksgA, infB, PA1290, parR,  
  PA2020, soxR, ampR
3 Cellular Compartment mexA, mexB, oprM, oprD, phoQ, pmpM, parS, PA2018, PA2019, mexE, mexF,  
  oprN, arr, PA3676, PA4136, ftsI, ampD, oprJ, mexD, mexC, pmrB, parC, PA4990,  
  amgS, glpT, PA5514, gyrB, gyrA, phoQ, infB, pmrB, fosA, phoP, ksgA, katA,  
  ampR, ampC, pare, katB, nfxB

Table 5. List of KEGG pathway-enriched genes, UniProt keywords, and pFAM protein family

KEGG pathway-enriched genes Genes enriched in UniProt Keywords Genes enriched in the
  Pfam Protein family

mexR, mexA, mexB, oprM, oprD, parS,  mexA, mexB, oprM, cat, fosA, pmpM,  PA2018, mexF, PA3676, 
parR, PA2018, PA2019, PA2020, nalD,  arnB, arnA, ampC, aph, oprJ, PA2018,  mexD, oprM, oprN, 
nalC, ampR, ampC, ftsI, PA4974,   PA2019, mexE, mexF, PA3676, ftsI, mexD,  oprJ, PA4974, mexA,
PA5514, phoP, phoQ, arnB, pmrB,  mexC, gyrB, gyrA, parC, parE, phoP, phoQ,  PA2019, mexC
amgS parS, parR, pmrB, amgS, PA4136, PA4990, 
 oprN, katA, katB, glpT, arr, PA3078, PA3676, 
 PA4136, gyrB, soxR, ampR, nfxB, nalC, nalD
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modulated by the transcriptional regulator mexT. 
It was discovered to regulate the mexEF-oprN 
operon in the wild-type strain, but in the nfxC type 
resistant strain, the effector molecules required to 
activate mexT are constitutively present, resulting 
in overexpression of mexT and the mexEF-oprN 
operon, which contributes to resistance to 
quinolones, beta-lactams, and chloramphenicol.39 
mexT is upregulated and the mexEF-oprN efflux 
operon is overexpressed in nfxC-type bacteria, 
where oprD expression is downregulated. This 
reduces the entry of carbapenems and short basic 
peptides into the cell.40 Independent of the mexEF-
oprN operon, mexT downregulates the expression 
of the genes coding for rhamnosyltransferase, 
elastase, and hydrogen cyanide (rhlA, lasB, and 
hcnB). It also adversely affects the production 
of homoserine lactone-dependent virulence 
factors such as pyocyanin and rhamnose.41 DNA 
gyrase of Pseudomonas contains two subunits, 
gyrA and gyrB. gyrB has ATPase activity whereas 
gyrA helps in binding to the double-stranded 
host DNA. gyrA proteins can be targeted by the 
quinolones, thereby killing the bacteria through 
inhibition of DNA replication.42 Further, studies 
suggest that gyrA possesses 67-106 amino acid 
motif called Quinolone-resistance determining 
region, where substitutions in the amino acids 
may lead to reduced affinity to quinolone 
drugs.43 In silico analysis of gyrA with amino acid 
substitutions like T83I and D87N reduced the 
affinity of gyrA towards ciprofloxacin.42 During 
functional enrichment analysis, mexA, mexB, 
oprD, and oprN were found to be enriched in 
biological processes (GO:0046677, GO:0050896, 
GO:0042221) being associated with response 
to antibiotics; mexR and mexT were enriched in 
biological process (GO:0051172, GO:0010605) 
associated with negative regulation of cellular 
and macromolecule metabolic process while nalC 
and nalD were enriched with molecular pathways 
(GO:0000976) having transcription regulation 
activity and biological processes (GO:0051051, 
GO:0032410, GO:0034763) mostly functioning 
as a negative regulator of cellular processes. 
Topological changes in DNA are also responsible 
for antimicrobial-resistance and gyrA gene 
was found to be enriched in molecular process 
(GO:0003918). Cluster 1 revealed the genes which 
upon mutation (either deletion/ base substitution/

overexpression) could confer resistance to 
carbapenems, quinolones, and beta-lactams 
along with cationic peptide-like drug molecules 
in Pseudomonas aeruginosa. 
 Cluster 2 has 7 nodes and 13 edges 
with approximately one node connected to 4 
neighbours. The clustering coefficient was found 
to be 0.634 which is comparatively less than cluster 
C1. The most important genes reported from 
these clusters are mexC, mexE, oprJ, oprN, and 
ampC which are enriched in biological processes 
(GO:0050896, GO:0051301, GO:0009987) and 
molecular functions (GO:0015562, GO:0042910). 
MexD is a transmembrane protein transporter, 
while oprJ is a porin channel. mexC is a periplasmic 
adaptor protein of the mexCD-oprJ efflux 
system.43 Unlike mexAB-oprM, mexCD-oprN is not 
constitutively produced in the cell and is present 
in a very small amount under normal conditions.44 
mexCD-oprN expression is transcriptionally 
regulated by nfxB gene. Mutations in nfxB 
gene can lead to the overexpression of the 
efflux pump, contributing to resistance towards 
fluoroquinolones, tetracycline, chloramphenicol, 
and macrolides whereas increased susceptibility to 
beta-lactams, aminoglycosides, and complement-
mediated killing.11 In nfxB mutants, the pump 
is also associated with the resistance towards 
Chlorhexidine. The pump is also associated with 
resistance towards Chlorhexidine, an antimicrobial 
agent in nfxB mutants.45 mexEF-oprN is also 
regulated by the lysR family protein mexT, which 
is located upstream to the MexEF-OprN operon.46 
Studies have shown, insertional inactivation of 
mexT, overexpresses the efflux pump, thereby 
increasing the efflux of fluoroquinolones and 
chloramphenicol.46 Moreover, mexT inactivation 
is associated with the downregulation of OprD, 
which in turn confers imipenem resistance to the 
bacteria.47 mexEF-OprN overexpression also leads 
to the increased production of virulence molecules 
like rhamnolipids, elastase, and pyocyanin which 
also leads to quorum sensing mechanism in 
Pseudomonas aeruginosa.48 In addition to the 
genes encoding efflux pumps, cluster C2 consists 
of the ampC gene. Under normal circumstances, 
this gene is expressed at a low level; however, 
in cases of mutation, ampC overproduces ampC 
beta-lactamases, which hydrolyze beta-lactam 
antibiotics like cephalosporins and cephamycin.49,50
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 Clusters 3 and 4 revealed just 3 nodes 
with 3 edges, making them the least dense 
clusters found in the whole network. ampR, 
ampD, cat, aph, and fosA are a few of the crucial 
antimicrobial genes that were obtained from C3 
and C4 play a significant role in Pseudomonas 
resistance. In P. aeruginosa, ampC beta-lactamase 
production is regulated by genes-ampD, ampR 
and ampG and ampD. ampR gene transcribes a 
LysR superfamily DNA-binding protein that has 
two regulatory properties. In case of b-lactam 
inducer absence, LysR binds to the pentapeptide 
protein (UDP-MurNAc) and inhibits ampC 
transcription. In the presence of b-lactam inducer, 
the UDP-MurNAc pentapeptide is competitively 
replaced by the 1,6-anhydro-MurNAc tripeptide, 
which turns ampR into an activator and causes 
ampC to produce b-lactamase.51 Thus, ampC 
mutations can lead to the upregulation of 
AmpC-b-lactamases production resulting in 
b-lactam antibiotics resistance50 ampD encodes 
N-acetyl-anhydromuramyl-L-alanine amidase that 
preferentially hydrolyzes the 1,6-anhydro-MurNAc 
peptide, hence suppressing ampC production.52 
On the other side, ftsI encodes penicillin-binding 
protein 3 (PPB3), which is an important target 
for beta-lactam antibiotics, and also essential 
for bacterial survival.53 PPB3 exhibits structural 
changes as a result of ftsI gene mutations or 
horizontal gene transfer, and so resists the effect 
of beta-lactams by exporting them through efflux 
pumps or converting them into a functionally 
inactive form.54 Genes in Cluster 4 include 
fosA which is associated with the hydrolysis of 
Fosfomycin thereby hindering the treatment of P. 
aeruginosa-associated cystitis,55 cat gene encoding 
chloramphenicol acetyltransferase promotes 
chloramphenicol resistance in Pseudomonas,56 
aph gene encodes for enzymes that result in 
acetylation, adenylation and phosphorylation of 
aminoglycosides.57

 Based on cluster analysis, the genes 
oprD, oprM, oprN, mexR, nfxB, mexB, mexT, mexA, 
nalD and nalC had the greatest number of gene 
interactions and could be collectively known as 
hub genes which are almost like the ones predicted 
by Miryala et al.22 Because their expressed 
proteins are specific to the bacterial cell, they 
could be used as potential drug targets. mexAB-
oprM plays a critical role in the development 

of both inherent and acquired resistance of P. 
aeruginosa. Overexpression of mexAB-oprM 
causes increased efflux of many antibiotics, 
including macrolides, b-lactams, quinolones, 
and tetracycline.12,58 Similarly, mutations in nalC 
can cause PA3720-PA3719 overexpression and 
subsequent upregulation of mexAB-oprM.59 A 
potentially effective strategy is the inhibition of the 
mexAB-oprM multidrug efflux operon, which could 
significantly reduce the carbapenem resistance 
as well as b-lactam resistance thereby enhancing 
the susceptibility of multidrug resistance P. 
aeruginosa. Deficient expression of oprD, an 
outer membrane porin can lead to baseline 
resistance to carbapenem antibiotics. Studies 
show upregulation of oprD expression can be used 
as a therapeutic strategy against carbapenem-
resistant Pseudomonas strains.38,60

 
CONCLUSION

 Multidrug-resistant (MDR) Gram-negative 
bacterial infections continue to pose problems for 
the medical community and complicate antibiotic 
options. Early commencement of adequate 
antipseudomonal medication is required for 
P. aeruginosa infections to avoid the negative 
consequences of delayed therapy. In the present 
study, a total of 46 genes were identified to 
be responsible for P. aeruginosa multidrug 
resistance. The study found out that the mexAB-
oprM efflux pump system along with its regulator 
genes could be potential therapeutic targets. 
Repurposing already available clinically approved 
drugs, identifying plant-based therapeutics, or 
specifically targeting the exporter protein mexB 
with antimicrobial peptides could solve a part of 
the bigger problem of antibiotic resistance caused 
by Pseudomonas aeruginosa. 
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