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Abstract
The quantity and diversity of the microbial community in soil make it possibly the most difficult of 
all the natural ecosystems. It is thought to be challenging to culture up to 99% of the microorganisms 
in a given environment. The intricacy of microbial variety is impacted by numerous interconnected 
factors, including as soil structure, water content, biotic activity, pH, and fluctuations in climate. 
Environmental DNA isolation and purification are often the first steps in the soil metagenomic analysis 
process. Creating genomic DNA libraries and then using them for high-throughput sequencing or 
library screening are the main steps in the application of metagenomics. These genomic sequences 
are currently being used to advance our knowledge of the ecology and physiology of these bacteria 
as well as for new biotechnological and medicinal applications. To completely comprehend the 
intricacies involved in the operation of microbial communities and the interactions between different 
microorganisms within specific niches, metagenomic sequences are employed. This study focuses on 
the latest advancements in biotechnological approaches and procedures for identifying novel genes 
from uncultured microorganisms and intricate microbial habitats.
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INTRODUCTION

 Microbial populations inhabiting the 
environment like soil, water, and air may not 
be accessible as they are unculturable in the 
laboratory by conventional methods used in the 
laboratory.1 On Earth, there are thought to be 1030 
microbiological cells, with prokaryotes accounting 
for the majority of individual organisms, which 
comprise 106 to 108 distinct genospecies.2,3 Only 
0.1-1% of all microorganisms found in nature can 
be grown in a typical laboratory setting.4 Therefore, 
using conventional culturable techniques, it is 
hard for researchers to study more than 99% 
of the microorganisms that exist-microbes that 
can occasionally have peculiar but potentially 
extremely helpful characteristics like breaking 
down garbage or synthesising new substances 
like antibiotics or pharmaceuticals. Without the 
requirement for culture, researchers can examine 
wild microbial populations through the analysis 
of directly extracted nucleic acids from ambient 
samples. Due to the development of nucleic acid-
based technology, the taxonomy based on routine 
parameters such as morphological, physiological, 
and biochemical was no longer useful or authentic.5 
The metagenome is made up of all the genetic 
material found in environmental samples that is 
made up of the genomes of numerous different 
organisms. DNA sequences have been accumulated 
as a result of metagenomics, and these sequences 
are being used for innovative biotechnological 
applications. The field of metagenomics is a 
technique that enables the examination of the 
great diversity of individual genes and their 
products as well as the analysis of complete 
operons encoding metabolic, biosynthetic, 
or biodegradative processes.6,7 It involves the 
extraction, cloning, functional screening, and 
direct random shotgun sequencing of the entire 
genetic complement of habitat.8-10 The uncultured 
microorganism’s genomes comprise vast quantities 
of data, and one of the most advanced methods 
to discover and investigate this potential is 
metagenomics. Pharmaceuticals, agrochemicals, 
and fine chemicals are all produced using 
metagenomics technology, since the advantages 
of chiral synthesis catalysed by enzymes are 
becoming more widely acknowledged. Finding 
relevant natural and synthetic compounds for 

medication development is now more likely 
because to the recovery of metabolic pathway 
gene clusters involved in the manufacture of 
antibiotics and bioactive chemicals.11,12 One 
of the hardest samples to work with when 
developing appropriate extraction and purification 
techniques is soil. Many substances found in the 
complex soil matrix interfere with hybridization 
and detection protocols, the probable reason is 
polymerases and restriction enzymes inhibition.13 
Of particular concern are the highly abundant 
natural degradation-prone humic and fulvic acids 
found in high-organic soil. These fractions exhibit 
a wide range of solubilities and charge properties 
because they are such intricate combinations of 
related chemicals. It is difficult to find extraction 
and separation techniques that can remove all 
humic chemicals from soil DNA samples, if not 
impossible. A culture-dependent method has 
been employed more frequently in recent years 
to supplement two or more culture-independent 
methods in order to lessen biases brought on by 
using only one method. For instance, two culture-
independent methods were used to study the 
bacterial communities of the nostril and posterior 
wall of the oropharynx. Microarray and 16S rRNA 
gene clone library analyses revealed similar 
phylogenetic distribution patterns, indicating 
good concordance between these profiling 
approaches.14 Numerous techniques have been 
developed to extract high-quality DNA from a range 
of environmental materials, such as surface water 
from rivers,15 polluted subterranean sediments, 
groundwater,16,17 marine picoplankton,18 soil,19-26 
hot springs and mud holes in solfataric fields,27 
glacier ice,28 buffalo rumens,29 and Antarctic 
desert soil.30 The most current advancements 
in biotechnological methods and procedures for 
locating new genes in unexplored microbial niches 
and reservoirs of microorganisms are covered in 
this review.

Metagenomics: a tool for novel compounds
 Numerous possible uses for metagenomics 
exist in the field of biotechnology (Figure 1). Using 
a shotgun sequencing method, researchers have 
sampled the genetic content of these diverse 
habitats using soil,6 acid mine drainage,31 and varied 
environments.32 Using advanced techniques such 
as gene arrays, proteomics-based analysis, and 
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microscopy, metagenomics unlocks information 
about the unexplored microbial community that 
is currently not accessible to unculturability of all 
microorganisms. Basic and applied approaches for 
metagenomics have explored microbial diversity, 
evolutionary relationship, genetic, population 
structure, functional activity, relationships with 
the environment, the discovery of antibiotics, and 
industrially important enzymes.33

 Through metagenomics, a number of 
new genes and gene products are found, such 
as the first bacteriorhodopsin of bacterial origin, 
new members of protein families that are already 
known, like DNA Polymerase, RecA, and Na+(Li+)/H+ 
antiporters, as well as determinants of antibiotic 
resistance and small molecules with antimicrobial 
activity.34-36 

Approaches to metagenomics
 The metagenomics involves the quality 
DNA isolation from environmental samples, cloned 
into an appropriate vector, introduced into the 
host bacterium, and the resulting transformants 
are screened (Figure 2). Clones can be randomly 
sequenced, screened for phylogenetic markers like 
16S rRNA and RecA, or screened for the expression 
of certain features like enzyme activity or antibiotic 
synthesis using multiplex PCR or hybridization.37 
While there are advantages and disadvantages to 

each metagenomic technique, taken as a whole, 
they have improved our knowledge of non-
culturable microbes and shed light on previously 
unidentified prokaryotic groupings.

Analysis on the basis of sequence
 Sequence-based analysis can be used 
to perform complete sequencing of clones with 
phylogenetic anchors indicating the taxonomic 
group most likely to be the source of the DNA 
fragment. Based on conserved DNA sequences, 
sequence-based screening is not affected by the 
expression of cloned genes in a heterologous host. 
The creation of metagenomic libraries and shotgun 
sequencing have made a substantial amount 
of data available, including millions of novel 
genes, phylogenetic relationships, and predicted 
metabolic pathways of non-culturable bacteria.38 
Random clones can be sequenced using the 
phylogenetic marker-driven technique, yielding 
striking findings. Over 210 distinct metagenomes 
had been sequenced from a wide range of 
habitats, soil, human guts, faeces, and worldwide 
oceans.21 Large-scale microbial niche study is now 
possible because of next-generation sequencing 
techniques, which have prompted the creation of 
novel applications including metabolomics, meta-
transcriptomics, and comparative community 
metagenomics.39 As an authentic photo-receptor, 

Figure 1. Applied applications of metagenomics
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bacteriorhodopsin-like genes have also been 
investigated by the metagenomic investigation. 
These genes are found abundantly among the 
ocean’s proteobacteria, not just in archaea.40,41 
The process of reconstructing the genomes of 
organisms that have never been cultivated in an 
acid mine drainage community is an example of 
how large-scale sequencing efforts can enhance 
our knowledge of uneducated populations.42 
A metagenomic study of river Ganga explored 
the bacterial diversity and found Erythrobacter 
litoralis, Novosphingobium aromaticivorans, and 
Sphingopyxis alaskensis are the most abundant 
bacteria. Through these investigations, the 
relationships between phylogeny and function, 
the prevalence of particular gene types, and the 
reconstruction of non-culturable species’ genomes 
have all been developed.

Function driven approach
Extraction of DNA, library construction, and 
functional screening
Sample handling and cell lysis
 The preparation of samples before DNA 
extraction is crucial for researching the microbial 
ecology of natural populations. It is crucial to 
extract DNA as soon as possible from the fresh 
samples. Prior to extractions, samples can also 
be kept for hours or even days at 4°C. To lessen 
the impact of nuggets, proper mixing is required, 
and extraction should be carried out on grams of 
material.43

 The isolation of ambient DNA typically 
serves as the starting point for metagenome 
investigation. Metagenomic DNA isolation from 
soil and sediment samples can be classified 
into two primary categories: direct and indirect 
extraction approaches. Direct DNA isolation is 

Figure 2.  Metagenomic approach
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predicated on cell lysis inside the sample matrix 
and subsequent DNA separation from the cell 
debris.44 The indirect method entails removing 
the cells from the soil matrix, lysing the cells, and 
then extracting the DNA.45 
 Cell lysis is the most important stage 
in the extraction of soil metagenomic DNA. Its 
goal is to rupture the cell wall and membrane 
of microorganisms in order to liberate the 
DNA.46 The main problem encountered for soil 
or sediment samples that while chemical or 
enzymatic lysis the penetration is poor and it also 
depend on cell types. Mechanical disruption is 
more effective than chemical or enzymatic lysis 
as it provides more uniform disruption of cells, 
soil and sediment samples that allows excellent 
lysis buffer penetration. As a result, compared 
to chemical lysis, mechanical treatment is less 
selective and more effective.47 Thermal shocks, 

or repeated freezing and thawing, bead-mill 
homogenization, bead-beating, microwave 
heating, and ultrasonication are examples of 
mechanical disruption techniques. It is possible 
to alter the number of freeze-thaw cycles, as well 
as the incubation period and temperature.48,49 
Compared to other mechanical treatments 
such as bead beating, ultrasonication, and 
microwave heating, thermal shock is somewhat 
less violent.50 The bacterial cells attached to the 
soil aggregates are released by the effectiveness 
of the ultrasonication therapy.51 Cell lysis can be 
achieved very successfully by ultrasonication, 
microwave heating, and thermal shocks.52 It was 
suggested that in order to completely lyse the 
Streptomyces spores, these three treatments have 
to be administered. DNA is sheared as a result 
of mechanical treatments such bead pounding 
and sonication. Longer beating periods, faster 

Figure 3. Workflow for the exploitation of gene through soil metagenomics
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speeds, and smaller volumes of extraction buffer 
all resulted in higher DNA yields. But there was 
always a corresponding rise in DNA shearing 
with higher DNA output.53 There are 63-81% lysis 
reported using different techniques, up to 90% 
lysis efficiency.54-56 By using viable and direct cell 
counts, showed lysis efficiency ranging from 25 to 
66% following grinding and 74% following bead-
beating.57 The amount of clay in the soil had a 
negative correlation with the lysis efficiency.58

 Many protocols employ a combination 
of physical and chemical methods. The most 
common detergent treatment consists of 1% 
SDS and salt concentrations of 1 M or higher, 
frequently combined with heating and shaking.50 
Since DNA tends to sink into soil particles, resulting 
in poorer yields, a hot-SDS lysis method was 
initially introduced by soil extraction.59,60 Although 
SDS can hinder PCR if it is not eliminated in later 
steps, adding detergents and salts can help to 
mitigate this issue.61 SDS is the most frequently 
used detergent for cell lysis.62 Some Gram-
positive bacteria, however, might not be lysed by 
the SDS-based lysis method. For the majority of 
Gram-positive bacteria, the DNA yield was found 
to be two to six times greater using a process that 
involved grinding, freezing, and thawing, followed 
by SDS-based lysis.56 Combining chemical and 
mechanical lysis method greater the yield.63 They 
discovered that, compared to bead-beating or lysis 
at 70°C alone, homogenization in a bead-beater 
for one minute and one hour of incubation at  
70°C in high salt-SDS buffer produced twice as 
much DNA.
 
Metagenomic DNA extraction and purification
 Soil homogenates can be centrifuged 
to remove soil debris, but often the extractions 
proceed directly with the homogenate. Many of 
the methods facilitate breakage and subsequent 
deproteination by adding CTAB and increasing the 
salt concentration.47,56,58 Proteins have been salted 
using saturated salt solution NaCl,64 ammonium 
acetate,65 and sodium acetate.45 Nucleic acids 
were recovered in the supernatant after low-speed 
centrifugation precipitated proteins. NaCl was 
shown to deproteinize protein.66 The extraction 
buffer’s pH has a significant impact on the recovery 
of soil metagenomic DNA. Twenty distinct soil 
samples were used to optimize the pH of the 

DNA-extraction buffer.57 At pH 9-10, the maximum 
yield of DNA was produced. Nonetheless, at pH 
10 compared to pH 9, more humic materials 
were released. Polyethylene glycol (PEG) has 
been shown to improve soil metagenomic DNA 
precipitation.67,68 Humic acid removal may also 
be aided by the extraction buffer that contains 
1.2% CTAB and 4.5% NaCl, which is then incubated 
for 20 minutes at 65oC.43 Extracted DNA with 
good quality and quantity can be obtained by 
utilizing lysis buffer and heat treatment at 65°C for 
genomic DNA extraction.69 The precipitation of soil 
metagenomic DNA with PEG 8000 or isopropanol 
resulted in a higher recovery of humic chemicals 
and a poorer recovery of DNA. However, phenol 
extraction aids in the removal of PEG 8000 since it 
interferes with PCR. It was suggested that 5% PEG 
be used for the precipitation of soil metagenomic 
DNA since it produced noticeably fewer humic 
acids during the precipitation process without 
having an impact on PCR.70 The crude DNA extracts 
from soils typically require additional purification 
because they are typically too contaminated for 
molecular analysis. The ambient DNA could not be 
effectively purified using any approach. The most 
common purification method for removing humic 
components from DNA extracts is the use of silica 
gel or silica membrane separation.56,71,72 DEAE-
cellulose columns are frequently used for purifying 
tRNAs and have been employed for DNA extracts. 
The silica gel first binds to humic material and DNA, 
and some humic acids can be sequentially eluted 
from the matrix.73 Ion exchange chromatography 
and hydroxyapatite column chromatography 
are effective methods for removing a significant 
number of humic compounds. DNA may be 
effectively separated from humic materials using 
agarose gel electrophoresis.56,74 DNA is also 
separated according to size using polyacrylamide 
and dextran gel filtration columns.50,56,74-78 
Sepharose 4B was found to be more successful 
for excellent separation when tested the 
effectiveness of Sephadex G-200, Sephadex 
G-50, and Sepharose 4B with a variety of soils.75 
When extracting DNA for purification, the cesium 
chloride gradient-a traditional technique-seems 
to be quite successful.79-82 Humic materials can 
also be eliminated using the process of differential 
ethanol precipitation. The collaboration of 
chromatographic and spectroscopic methods 
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Table. Functional screening for antibiotics, industrially important enzymes, and biocatalysts from soil metagenomic 
libraries

Gene Habitat Library Average Number of Substrate Positive Ref.
  type insert  clones  Clones
   size (kb) screened  (hits)

Esterase/Lipase Soil Plasmid 6 2,86,000 Tributyrin 3 104
Esterase/Lipase Soil Plasmid 6 7,30,000 Triolein 1 104
Esterase/Lipase Soil BAC 27 3,648 Bacto Lipid 2 68
Esterase/Lipase Soil Plasmid 8 1,50,000 Tributyrin 10 106
Esterase/Lipase Forest soil Fosmid 40 31,000 Tributyrin 7 107
Esterase/Lipase  Soil Fosmid 35 65,000 Tributyrin 12 106
Esterase/Lipase Forest soil Fosmid 35 33,700 Tributyrin 8 108
Lipase Antarctic soil Plasmid 5 1,000 Olive oil 1 102
Lipase Forest soil Plasmid 4.6 20,000 Tributyrin 2 109
Amylase soil Plasmid 5 80,000 Starch 1 110
Amylase Soil BAC 27 3,648 Starch 1 67,111,112
Amylase Soil Fosmid 35 76,000 Starch 1 113
Amidase Soil Cosmid 40  D-phenylglycine- 3 104
     L-leucine
Amidase Soil Plasmid 5 1,93,000 D-phenylglycine- 7 110,114
     L-leucine
Cellulase Sediment  Λ phage 6 3,10,000 Carboxymethyl 3 115
     cellulose
Cellulase Soil Cosmid 22 1700 Carboxymethyl 8 20,100
     cellulose
Protease Soil Plasmid 10 10,00,000 Skimmed milk 1 116
Lipase Soil Plasmid 2 87,000 Tributyrin 1 98
4-Hydroxtbutyrate
Conversion Soil Plasmid 6 9,30,000  4-Hydroxybutyrate 5 117
Oxidoreductase Sediment Plasmid 6 1,00,000 Glycerol, 1,2- 24 118
     propanediol
Dehydratase  Soil Plasmid 4 5,60,000 Glycerol 2 119
Polyketide synthase Soil Fosmid 40 60,000 Glycerol and 138 8
(Type I)     chloramphenicol
β-Lactamase Soil Plasmid 5 80,000 Ampicillin 4 110
PKSI Soil Cosmid - 5,000 B. subtilis 1 120
DNase-anti bacterial Soil  BAC 27 3,648 nitrocefin 81 67
Comp.2 lipase
DNase-anti bacterial Soil  BAC 44.5 24,576 nitrocefin 132 67
Comp.2 lipase
Glycerol dehydratase Sediment Plasmid 5 1,00,000 Polyols, Carbonyls 24 117
Diol dehydratase
Polyketide synthase Soil BAC 120  -  1 19
(Type I)
Long chain N-acyl  Soil Cosmid 45 - B. subtilis 11 121
amino acid antibiotic
Acyl tyrosine  Soil Cosmid 35  B. subtilis 10 122
Bacteriorhodopsin  Soil BAC 80 2,400  1 40,41
Biotin  Soil Cosmid 35 50,000 Biotin-deficient 7 123
     medium
Agarase  Soil Cosmid 38 1,532 Agar medium 18 28
Pectate lyase  Soil Cosmid 38 1,532 Pectin 2 28
Nitrilase  Soil Λ phage 10 109 Adiponitrile 200 124
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with NGS makes the sequencing process less 
error prone and more efficient in gene expression 
profiling.83

Quantification of metagenomic DNA
 Humic compounds found in soi l 
metagenomic DNA sometimes cause problems 
when quantifying DNA. Humic compounds have 
a molecular mass ranging from 0.1 to >300 KDa, 
are dark brown in color, structurally complex, 
polyphenolic, and polyelectrolytic. Based on their 
solubility in acid or alkali, humic compounds can be 
classified into three main fractions: (i) humic acid, 
which is both alkali-soluble and acid insoluble; (ii) 
fulvic acid, which is both alkali and acid soluble; 
and (iii) humin, which is both alkali and acid 
insoluble.84 Contamination by humic molecules, 
polyphenolic ions, thiocyanates, and other organic 
compounds might result in absorption at 230 
nm. A260/A230 for pure DNA samples should be 
close to 1.8. Phenol contaminates DNA samples, 
is frequently employed in nucleic acid purification, 
and can greatly alter quantification estimates. 
Phenol absorbs with an A260/A280 ratio of 1.2 
with a peak at 270 nm. The quantities of humic 
chemicals, not DNA, are shown by absorption 
at 260 nm.75 Densitometric measurement of an 
agarose gel stained with ethidium bromide can 
be used to assess the content of DNA.85 Using the 
fluorescent dye picoGreen, soil metagenomic DNA 
may be quantified effectively. The double-stranded 

DNA is bound by the dye, and a fluorometer is 
used to measure the DNA-picoGreen complex. 
PicoGreen fluorescence is disrupted by sample 
DNA that has more than 100 ng/µl of humic acid 
in it. Double-stranded DNA can be quantified down 
to 500 pg/ml with PicoGreen. However, humic 
acid cannot tamper with DNA measurement at 
amounts less than 10 ng/µl. With this technique, 
crude DNA extracted straight from the soil can 
be measured without the need for a purification 
phase.4

Determination of yield and quality of DNA
 Humic compounds are created during 
the degradation of plant, animal, and microbial 
biomass in soil metagenomic DNA isolation. DNA 
absorbs at 260 nm, while humic compounds, which 
have a complicated structure, absorb at 230 nm. 
Accordingly, the purity of the soil metagenomic 
DNA is often assessed using absorbance ratios 
at 260/230 nm (DNA/humic acid) and 260/280 
nm (DNA/protein).62 Humic compounds are 
created during the degradation of plant, animal, 
and microbial biomass in soil metagenomic DNA 
isolation. DNA absorbs at 260 nm, while humic 
compounds, which have a complicated structure, 
absorb at 230 nm. DNA yield is calculated by 
measuring the absorbance at 260 nm of the 
elute to estimate the concentration of DNA; the 
absorbance should fall between 0.1 and 1.0. The 
presence of other elements, such as contaminating 

Table. Cont...

Gene Habitat Library Average Number of Substrate Positive Ref
  type insert  clones  Clones
   size (kb) screened  (hits)

Turbomycin  Soil BAC 44.5 24,546 Several 3 125
Indirubin  Soil BAC 63 12,000 B. subtilis, S. aureus 4 126
Violacein,   Soil Cosmid 40 - B. subtilis 2 127
Deoxyviolacein
Terragine A  Soil Plasmid 2 1020  2 96
4-Hydroxybutyrate  Soil Plasmid 6 9,30,000 4-Hydroxybutyrate 5 116
conversion
Dehydratase    Soil Plasmid 4 5,60,000 Glycerol 2 119
Alcohol 
Oxidoreductase  Soil Plasmid 4 4,00,000 Glycerol 10 117
Cellulase Soil Illumina
  DNA library  3 - AZCL-Cellulose 1 128
  preparation 
  kit
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particulate particles in a filthy cuvette, is indicated 
by absorbance at 325 nm. For a 1 cm detection 
route, a 260 nm value of 1 means 50 µg of DNA 
per millilitres of water. The extinction coefficient 
for nucleic acid in water provides the basis 
for the relationship between absorbance and 
concentration.
 Humic acid quantification is influenced by 
protein impurities and nucleic acid content. The 
number of humic acids, which is independent of 
the amount of DNA and protein, could be measured 
using absorbance at 320 nm.86 The degree of PCR 
contamination and A320 readings have a strong 
correlation (R2 = 0.911). The two methods of 
evaluating humic acid levels are (i) absorbance 
at 340 nm and (ii) fluorescence (excitation at 471 
nm and emission at 529 nm).87 Humic acid tests 
utilizing either 10 ng/µl humic acid addition are 
affected by DNA and protein content. Humic acid 
concentrations and absorbance measurements at 
340 nm range from 0.1 to 100 ng/µl. The humic 
compounds may be measured effectively using 
samples that contain 50 ng/µl of humic acid and 
either 10 ng/µl DNA or 2 µg/µl bovine serum 
albumin. These samples are identical to those that 
simply contain humic acid.

Metagenomic DNA library construction and 
functional screening
 In  order  to screen the complex 
metagenomic libraries made up of millions of 
clones, a different function-driven approach that 
is highly selective for targeted genes is based 
on mutants of host strains or heterologous 
complementation of host strains that require the 
targeted genes for growth under the selective 
conditions. The identification of genes encoding 
lysine racemases,88 enzymes involved in poly-
3-hydroxybutyrate metabolism,89 resistance to 
antibiotics,89-92 DNA polymerases, and lipase93 are 
among the functional screens using heterologous 
complementation. The creation of a metagenomic 
DNA library from diverse environmental samples 
and its subsequent cloning into an appropriate 
vector are contingent upon the quality of the 
extracted DNA (Figure 3). This is because the 
enzymatic modifications necessary for cloning 
are susceptible to contamination from a range 
of biotic and abiotic elements, including humic 
substances. Large chunks of DNA are needed if 

the material is to be utilized to build a gene bank, 
as this will reduce the number of clones that need 
to be screened. The fragment size of the DNA 
may not matter as much in a PCR as it does in 
terms of DNA yield. Building a metagenomic DNA 
library and effectively screening it are necessary 
steps towards the possible identification of new 
chemicals. When preparing a metagenomic DNA 
library, two factors need to be properly taken 
into consideration. The first is the size of the DNA 
fragments to be cloned from the metagenome, 
which is the entirety of the genomes of all the 
bacteria that have colonized a certain habitat. 
The genetic diversity of the soil metagenome 
is between 5,000 and 5,000,000 times higher 
than that of the E. coli genome, based on the 
reassociation kinetic data.4,94 The number and 
clustering of the genes involved in the production 
of new chemicals is the second factor to take into 
account. Because distinct taxonomic groups exist, 
prokaryotes exhibit large variances in expression, 
and random cloning in E. coli can only identify 40% 
of the enzymatic activity.95 To broaden the range 
of detectable activities in the functional screening 
of metagenomic DNA libraries, more hosts 
have been used, including Streptomyces spp.,96 
Thermus thermophilus,97 Sulfolobus solfataricus,98 
and diverse Proteobacteria.99 Numerous novel 
biocatalysts have been identified as a result of 
the use of metagenomic libraries. These include 
cellulases,21,100 DNA polymerases,101 proteases,24 
l ipases/esterases,30,102-104 and antibiotics  
(Table).90 The biocatalysts that have most 
commonly been retrieved from metagenomic 
libraries are likely lipases and esterases. A 
screening for b-D-glucuronidase activity was 
conducted on a metagenomic library consisting 
of 46,000 clones obtained from fecal pools.105 
Metagenomic libraries should comprise clones 
that are commonly clustered and have bigger DNA 
inserts since the genes encoding the production of 
secondary metabolites are often clustered.
 Bead beating and mechanical shearing 
pose physical challenges to direct DNA isolation 
techniques from soil  and sediments for 
metagenomic library assembly.129, 130 DNA released 
during cell lysis may be deteriorated by nucleases. 
Given the frequent clustering of genes encoding 
the production of secondary metabolites, genomic 
libraries ought to include clones with bigger DNA 
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inserts. Large portions of the genomes can be 
more easily characterized because to the cloning 
of high molecular weight DNA into bacterial 
artificial chromosomes (BACs).131 It is known that 
over 80% of the actinomycete promoters are not 
recognized by E. coli because of the variation 
in G+C composition.132 On the other hand, the 
maximum number of functionally expressed genes 
is required for functional screening. To isolate 
catabolic enzymes from the metagenome, a high 
throughput screening technology and substrate-
induced gene expression screening have been 
used. When screening biocatalysts, the functional 
metagenomic approach is usually employed, which 
necessitates the expression of the required activity 
in a surrogate host, usually E. coli. A considerable 
fraction of proteins cannot be expressed in this host 
in a functional manner, despite the fact that the 
bacterial species has shown itself to be a versatile 
and helpful host for heterologous expression. 
The majority of functional experiments depend 
on the full expression of metabolic pathways, 
necessitating the identification of promoters in 
the heterologous host in order to coordinate the 
expression of all sets of genes. The entire potential 
of the microbial gene pool can be accessed using 
the metagenomic approach. Metagenomic clones 
that are expressed are extremely rare for any 
particular activity. For instance, out of 80,000, 
7,30,000, and 1,00,000 clones that were found 
to have amylase, lipase, and protease activity, 
respectively, only one clone exhibited these 
activities. The clones were produced from soil. 
Three in 24,546 for turbomycin, four in 12,000 for 
indirubin, and seven in 50,000 for biotin synthesis 
were indicative of activity in a library built using 
soil metagenome. The development of effective 
functional screening and selection techniques is 
necessary due to the lack of functionally active 
clones, in order to find novel compounds such as 
medicines and industrially significant enzymes. 
The Daniel group developed a CVclever selection 
for Na+(Li+)/H+ antiporters.133,134 To enable growth 
on the medium containing 7.5 mM LiCl, the Daniel 
group must complement an E. coli mutant that is 
deficient in three Na+/H+ antiporters (nhaA, nhaB, 
and chaA). Using this method, two new antiporter 
proteins were found in a soil metagenomic 
collection of 14,80,000 clones. When the functions 
of interest don’t give a solid foundation for 

selection, high throughput screens can be used 
instead. The ability of metagenomic analysis 
to target genes and find new biotechnological 
applications is being enhanced by metagenomic 
libraries.135,136 Selection for antibiotic resistance 
resulted in the extraction of determinants resistant 
to aminoglycosides from soil,111 and tetracycline 
from human oral microbiota samples.137 A 
high-throughput screening method known as 
substrate-induced gene expression screening 
(SIGEX) combines fluorescence-activated cell 
sorting with an operon trap gfp expression 
vector. SIGEX is governed by regulatory elements 
that are situated in close proximity to catabolic 
genes and is predicated on the expression of 
catabolic genes. A metagenomic library obtained 
from groundwater revealed the presence of 
an aromatic-hydrocarbon-induced gene.17 The 
potential for effectors other than the particular 
substrates to activate transcriptional regulators 
is a disadvantage of this strategy. Product-
induced gene expression (PIGEX) screening was 
another method that was introduced.138 Product 
information is identified by the expression of gfp 
included in PIGEX. In the presence of substrate 
benzamide, amidases from the metagenomic 
library made with activated sludge are screened 
using a benzoate-responsive transcriptional 
regulator called BenR.

CONCLUSION

 The intriguing and relatively young field 
of metagenomics holds the promise of producing 
biologically active compounds and opening up new 
avenues for biotechnology to solve urgent global 
concerns. Only metagenomics can access the vast 
amount of information contained in the microbial 
genome. Since their inception, metagenome-
based methods have resulted in the collection of a 
growing number of DNA sequences; nevertheless, 
up until now, the sequences that have been 
recovered are those of uncultivated bacteria. 
Humic acid contamination presents a considerable 
obstacle to soil DNA extraction and purification, 
therefore no one technology is suitable for this 
process. Combining various techniques may 
improve the production and calibres of DNA. It 
is now the time to accept modern techniques for 
the study of unexplored microorganism which are 
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tough to culture in artificial media. Metagenomic 
technologies are projected to unlock millions 
of unique genes for drugs, pharmacological 
compounds, industrially significant enzymes 
for metabolic pathways, phylogenetic links, 
and microbial interactions among uncultured 
bacteria. Beyond revolutionizing mainstream 
microbiology, the field of metagenomics promises 
to revolutionize our understanding of the entire 
living universe through its fresh perspective on 
the microbial world.
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