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Abstract
Escherichia coli harbors various virulence factors responsible for diarrhea and other diseases in neonatal 
calves. The antimicrobial resistance (AMR) among the diarrheagenic and non-diarrheagenic E. coli may 
impose a potential health hazard among the calves and make the antibacterial therapy ineffective. 
The virulence gene expression among AMR strains plays a crucial role in establishing diarrheal disease 
with therapeutic complications. This study investigates the diversity of E. coli isolates from neonatal 
calves. E. coli isolated from the fecal samples were subsequently subjected to pathotyping and 
virulotyping using the PCR technique. AMR profiling was done by phenotypic and genotypic methods. 
The ERIC pattern of E. coli pathotypes was compared and correlated with the pattern of AMR and 
virulence traits. 179 isolates were obtained from 158 fecal samples collected from neonatal calves. 
Forty-two isolates were pathotypable; predominated by shigatoxigenic E. coli. Seventy-four isolates 
were ESBL producers. Nineteen isolates were carbapenem resistant and 68 isolates exhibited quinolone 
resistance. blaAmpC, blaVIM and qnrS were the predominant genes detected among ESBL, carbapenem and 
quinolone resistance genes, respectively. The present study indicated diverse virulence profiles and 
the presence of significant ESBL, carbapenem and fluoroquinolone resistance among E. coli pathotypes 
from calves. The analysis of resistance profiling indicates the risks associated with the indiscriminate 
antibiotic use among farm animals, which may pose a potential health hazard to livestock owners. 
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INTRODUCTION

 The antibiotics industry started facing 
a major setback with an upsurge of multidrug-
resistant microbes from the early 1960s.1 The 
infections induced by antimicrobial-resistant 
bacteria have a major impact on public health.2 
Both pathogenic and commensal organisms may 
be resistant to the many antimicrobial agents, but 
the latter is regarded as a potential reservoir of 
the resistance markers.3 Most members belonging 
to the genus Escherichia are reported to be 
commensals.4 Although commensal strains of E. coli 
rarely cause infections, they can act as reservoirs 
of resistance genes (RG) that may be transferable 
to other bacteria, leading to resistant infections.5,6 
Antimicrobial resistance (AMR) emerges due to the 
frequent and indiscriminate use of antimicrobials 
resulting in the increased shedding of resistant E. 
coli by the affected individual.7 Also, there is an 
age-dependent trend in the carriage of resistant 
genes by fecal E. coli as most of the isolates from 
calves are significantly more resistant and often 
multidrug-resistant, compared to that from 
older cattle.8,9 Production of beta-lactamase 
enzymes by the bacteria is the most important 
mechanism by which they acquire resistance 
to the commonly used b-lactam antibiotics 
like cephalosporins and penicillins. E. coli are 
mostly recognized as Extended-spectrum Beta-
Lactamases (ESBLs) producers.10 Also, carbapenem 
resistance in E. coli isolates from livestock may 
increase the risk of dissemination to humans 
through contact with animals. Carbapenemase 
enzymes and efflux pumps primarily mediate 
carbapenem resistance.11 There are incidences of 
co-resistance to other antimicrobial drugs along 
with carbapenem resistance.12 Fluoroquinolone 
resistance has also been reported in E. coli 
and fluoroquinolone-resistant E. coli is often 
resistant to all other main classes of available 
antimicrobials such as gentamicin, tetracycline, 
ampicillin, chloramphenicol, and trimethoprim/
sulfamethoxazole.13

 Though the majority of the fecal E. 
coli isolates are found to be non-pathogenic 
commensals, as a result of acquiring virulence 
and RG, some of the commensals can evolve into 
pathogenic strains.14 Pathogenic and commensal 
E. coli are frequently isolated from diarrheic cases 

of neonatal calves. Diarrhea is an important cause 
of economic losses in the dairy industry. The 
pathotypes of Escherichia coli come under the 
category of Diarrhegenic E. coli (DEC), which is 
recognized as the most important bacterial cause of 
diarrhea, leading to high mortality in calves.15 The 
various pathotypes of DEC include Enterotoxigenic 
E. coli (ETEC), Enteropathogenic E. coli (EPEC), 
Enterohemorrhagic E. coli (EHEC), Shiga-like 
toxin-producing E. coli (STEC), Enteroinvasive 
E. coli (EIEC), Enteroaggregative E. coli (EAEC) 
and Diffusely Adherent E. coli (DAEC).16 Cattle 
may act as a reservoir of STEC/EHEC, but they 
do not develop the systemic disease due to the 
lack of Stx receptor. However, they can survive 
and propagate inside the host intestine with 
the help of immunomodulation and intestinal 
colonization.17,18 EHEC is frequently shed by 
cattle and approximately 75% of the human 
outbreaks are associated with cattle or bovine-
derived products.19 Among these, Few strains 
have features of different pathotypes, making 
them possibly more virulent hybrid pathogenic 
strains.16 The number of virulence factors (VF) 
carried by the pathogenic E. coli strains plays a 
crucial role in the colonization and contributes to 
the pathogenicity.20

 Very few studies have investigated the 
association between the virulence and resistance 
pattern of E. coli isolates from neonatal calves 
in India. Therefore, it is customary to study the 
distribution and occurrence of virulence genes 
(VG) and their relationship with resistance 
patterns. With this background, the present study 
was conducted on virulotyping and AMR profiling 
of E. coli associated with neonatal calves.

MATERIALS AND METHODS

Faecal sampling, isolation and identification
 A total of n = 158 fecal samples were 
collected from the neonatal calves (up to the age of 
one month) of two different farms (multiple times 
from the Cattle and buffalo farm (CBF), ICAR-IVRI, 
Bareilly, Uttar Pradesh, and two times from the 
Instructional dairy farm (IDF), GBPUAT, Pantnagar, 
Uttarakhand). Out of this, 65 were diarrheic 
(watery to pasty consistency with or without 
blood) samples and 93 were from non-diarrheic 
animals. The samples were inoculated in buffered 
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peptone water and incubated overnight at  
37°C for enrichment. The enriched culture was 
further streaked on Eosin methylene blue (EMB) 
agar plates and incubated at 37°C for 24 hours. 
Colonies revealing characteristic metallic sheen 
on EMB agar were subjected to biochemical 
characterization by using a HiMViC kit (Himedia, 
India). 

Pathotyping of E. coli isolates
 The E. coli  isolates were further 
pathotyped by multiplex PCR.21 DNA was extracted 
using QIAamp DNA Mini Kit following standard 
protocol. Multiplex PCR was optimized for the 
detection of different pathotypes viz., EPEC (eae 
and bfp), EHEC (eae, stx1, stx2 and hly), STEC (stx1, 
stx2, and eae), EAEC (aggR and pic), ETEC (elt, 
esta, and estb) and EIEC (ipaH and invE). Details 
of the primers used for pathotyping are given in 
Supplementary Table 1. ATCC 25922 (E. coli) was 
used as negative control.

Antimicrobial susceptibility testing
 Antimicrobial susceptibility testing of the 
E. coli isolates was done using 18 antibiotics (9 
different classes) using Kirby Bauer disc diffusion 
method as per CLSI guidelines (CLSI, 2018).22 The 
Combination disc diffusion method was used 
for phenotypic detection of ESBL producing E. 
coli as per CLSI recommendation. An increase 
of 5 mm or more in the zone of inhibition of 
the disc containing a combination of antibiotic 

and clavulanic acid, than the disc containing the 
antibiotic alone was indicating of ESBL production. 
Phenotypic resistance against carbapenem and 
quinolones was also checked. The following 
antimicrobial agents at concentrations mentioned 
were used for antimicrobial susceptibility testing: 
Streptomycin (10 µg), Gentamicin (10 µg), 
Kanamycin (30 µg), Amikacin (30 µg), Cefotaxime 
(30 µg), Ceftazidime (30 µg), Colistin (10 µg), 
Enrofloxacin (10 µg), Ciprofloxacin (5 µg), Ampicillin  
(10 µg), Meropenem (10 µg), Ertapenem (10 µg), 
Doripenem (10 µg), Imipenem (10 µg), Tetracycline 
(30 µg), Cotrimoxazole (25 µg), Sulpadiazine (100 
µg), Trimethoprim (10 µg).
 A d d i t i o n a l l y,  E S B L  p ro d u c t i o n , 
carbapenem and quinolone resistance among 
the E. coli isolates were determined genotypically 
using PCR. Eight genes were targeted for the 
determination of ESBL production. The protocol 
included a multiplex PCR for the detection of 
5 different alleles of the blaCTX gene (blaCTX-M1, 
blaCTX-M2, blaCTX-M8, blaCTX-M9, and blaCTX-M25)

23 and 
three uniplex PCRs for detecting blaAmpC, blaTEM 
and blaSHV genes. Detection of carbapenem RG 
included two sets of multiplex PCRs: blaIMP, blaVIM, 
blaSPM & blaOXA-23 and blaOXA-48, blaKPC, blaBIC & blaNDM 
respectively.24,25 A multiplex PCR targeting eight 
different genes (qnrA, qnrB, qnrC, qnrD, qnrS, 
oqxAB, qepA and aac-(6')-Ib-cr) was used for 
detecting quinolone resistance in E. coli isolates.26 
Details of the primers used for genotypic AMR 
detection are given in Supplementary Table 1. 

Table 1. Prevalence of Resistance Genes in E. coli Isolates. ESBL resistance genes were present among 93.24% of 
phenotypically resistant E. coli isolates, whereas quinolone resistance and carbapenem resistance genes were 
found among 47.05% and 10.52% of resistant isolates

Phenotypic resistance Genotypic resistance Resistance Presence among Presence among
(No. of isolates) among phenotypically  genes phenotypically phenotypically
 resistant isolates  resistant isolates susceptible isolates

ESBL resistance 69 (93.24%) blaAmpC (153) 68 (91.89%)  85 (80.95%)
(74 isolates)  blaCTX-M (59) 45 (60.81%)   14 (13.33%)
  blaTEM (43) 17 (22.97%)   26 (24.76%)
Carbapenem resistance 2 (10.52%) blaVIM (3) - 3 (1.87%)
(19 isolates)  blaNDM (2) 2 (10.52%) -
  blaBIC (1) - 1 (0.62%)
Quinolone resistance 32 (47.05%) qnrS (82) 27 (39.70%) 55 (49.54%)
(68 isolates)  qnrB (13) 6 (8.82%) 7 (6.30%)
  aac (6')-Ib-cr (6) 6 (8.82%) -
  qepA (3) 2 (2.94%) 1 (0.90%)
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E. coli ATCC 25922, E. coli ATCC 35218, E. coli 
ATCC 2496, K. pneumoniae ATCC 700603, and K. 
pneumoniae NCTC 13440 (K. pneumoniae) were 
used as reference strains. 

Virulence gene detection
 All the E. coli isolates were investigated 
for 14 different VG (lpfAO113, efa1, katP, mat, 
fimC, hrA, iss, ibeA, ompA, traT, chuA, iroN, ehxA 
and iha) by PCR. Three uniplex PCRs were used 
for detecting lpfAO113, efa1 and katP genes. Two 
multiplex PCRs for detecting two sets of genes 
mat, fimC, hrA & iss, and ibeA, ompA, traT, chuA 
& iroN, respectively and one duplex PCR targeting 
ehxA and iha genes were also performed. Details 
of the primers used for virulotyping are given in 
Supplementary Table 1.

Determination of E. coli molecular heterogeneity
 E. coli isolates were genotyped using 
Enterobacterial Repetitive Intergenic Consensus 
(ERIC) PCR.27 The PCR condition was as follows: 
denaturation for 3 min at 95°C, followed by  
35 cycles of 95°C for 0.5 min, 51.2°C for 1 min, 
and 72°C for 2 min, followed by a final extension 
for 5 min at 72°C. Gel images were captured 

after electrophoresis, and the dendrogram was 
constructed using GelJ and visualized using FigTree 
v1.4.4. Details of the primers used for the ERIC PCR 
are given in Supplementary Table 1.
 All the PCR reactions were carried out 
in 25 µL consisting of 10 X PCR buffer (Thermo 
Scientific), 25 mM (final concentration in 25 µL) 
each of dATP, dGTP, dTTP and dCTP (Thermo 
Scientific), 0.625 U of DNA Taq polymerase 
(Thermo Scientific), 1 µl of DNA template and 
the final volume was made up to 25 µl by adding 
nuclease-free water. Concentrations of all the 
primers used are given in the supplementary Table 
1. Apart from this, 2.5 mM MgCl2 was added to the 
reaction mixture for the multiplex PCRs.

RESULTS

Isolation of E. coli
 179 isolates were recovered from 158 
samples (77 isolates from CBF, IVRI and 102 
from IDF, GBPUAT). 42 (23.46%) E. coli isolates 
were diarrheagenic pathotypes with STEC being 
the most prevalent pathotype (n = 18/179;  
10.05%), followed by EPEC (n = 15/179; 8.37%, 
EHEC (n = 7/179; 3.9%) and EAEC (n = 2/179; 
1.11%). 

Figure 1. Number of E. coli isolates resistant to various drugs in the study. The highest resistance was found against 
the cephalosporin class [ceftazidime (84.35%; n = 151) and cefotaxime (67.59%; n = 121)] and the lowest resistance 
was shown against carbapenem class of drugs [ertapenem (6.70%; n = 12) and doripenem (6.14%; n = 11)]. No 
resistance was detected against meropenem and colistin
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Figure 2 continue...
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Figure 2. Dendrogram created using the ERIC pattern showing genetic relatedness among E. coli isolates. Two major 
clusters with most pathotypes falling under one cluster. Most isolates in a single cluster were from the same farm
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Figure 3. Heat map representing resistance and virulence genes among isolates of various pathotypes obtained 
from the two farms. Several occurrences of pathotype-based clustering and locality-based clustering were identified 
among the E. coli isolates
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Phenotypic and genotypic antimicrobial 
resistance profiling
 The AMR profiling revealed a high 
occurrence of multidrug-resistant (MDR) E. coli 
isolates among neonates. 135 (75.41%) isolates 
were MDR, among which 102 were commensal 
E. coli. Resistance to ceftazidime (84.35%;  
n = 151) and cefotaxime (67.59%; n = 121) was 
highest and the lowest resistance was shown 
to ertapenem (6.70%; n = 12) and doripenem 
(6.14%; n = 11). None of the E. coli isolates were 
resistant to meropenem and colistin. The complete 
resistance profile among E. coli isolates is depicted 
in Figure 1. Out of 179 isolates, 74 (41.34%) 
were phenotypic ESBL producers, 68 (37.98%) 
were quinolone-resistant and 19 (10.61%) were 
carbapenem-resistant. Out of 74 ESBL producers, 

69 exhibited the presence of at least one gene 
for ESBL production. The predominant ESBL gene, 
blaAmpC was present among 85.47% (n = 153/179) 
of the isolates. 91.89% (n = 68/74) of phenotypic 
ESBL producers were positive for the ESBL gene, 
blaAmpC followed by blaCTX-M (60.81%; n = 45/74) and 
blaTEM (22.97%; n = 17/74). The M1 allele group 
was the predominant type among blaCTX-M positive 
isolates. Six isolates had carbapenem RG and out of 
19 resistant isolates, only two carried carbapenem 
RG (blaNDM among two isolates). 68 isolates were 
resistant phenotypically to quinolone drugs. qnrS 
(39.70%; n = 27/68) was the predominant gene 
followed by qnrB, aac(6’)-lb-cr (8.82 % each;  
n = 6/68 ) and qepA (2.94%; n=2/68). The carriage 
of RG by phenotypically resistant and susceptible 
E. coli isolates is depicted in Table 1.

Figure 4. Diagrammatic representation of the correlation between the virulence and resistance genes. A high 
correlation among resistance to ceftazidime, cefotaxime, ESBL production, and the presence of blaAmpC gene was 
revealed
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Virulence gene profiling
 The distribution and presence of 14 VG 
were investigated. The incidence of the ompA 
gene was highest and detected among 99.44%  
(n = 178/179) of the isolates, followed by fimC  
(n = 161/179; 89.94%) and mat (n = 160/179; 
89.38%). ibeA was detected only in one isolate. 
All the isolates screened in this study carried at 
least one virulence gene. 30.16% (n = 54/179) 
of the isolates carried seven or more VG. Out of 
42 pathotypes, the majority (83.33%; n = 35/42) 
had six or more VG. The ehxA and katP genes 
were present exclusively among pathotypes. The 
distribution of VG among pathotypes and isolates 
from diarrheic animals is shown in Table 2.

Molecular fingerprinting
 Genotyping was carried out using ERIC-
PCR. PCR fingerprints were used to generate a 
dendrogram to understand the genetic relatedness 
among isolates. Two major clusters could be 
observed among the isolates, with most pathotypes 
falling under one cluster. Mostly, isolates included 
in a single cluster were from the same farm. The 
isolates within each cluster did not show any 
correlation for the health status designated. The 
related genotypes within the clusters showed a 
limited correlation concerning genotypic AMR 
and VF. Genetic diversity analysis of E. coli isolates 
using ERIC-PCR fingerprints-based dendrogram is 
depicted in Figure 2. The analysis shows that E. coli 
isolates recovered from the calves may indicate 
the predominant genetic lineages in the farm E. 
coli population. Also, the isolates recovered from 
diarrheic calves may not be probably involved in 
clinical diarrhea in all cases. 

Statistical analysis
 A heatmap was constructed with 
hierarchical clustering using R software v.4.3.2 with 
“pheatmap” package v1.0.12. A correlation plot 
was prepared using “corrplot” package v0.92 by 
calculating Spearman’s rank correlation coefficient. 
A heatmap constructed with a hierarchical 
clustering algorithm identified numerous instances 
of pathotype-based clustering and locality-based 
clustering among the isolates. The heatmap is 
shown in Figure 3. The correlation plot revealed a 
high correlation among resistance to ceftazidime, 

cefotaxime, ESBL production, and the presence of 
blaAmpC gene (p < 0.05) (Figure 4).

DISCUSSION

 AMR is a major concern of public health 
importance. Carbapenem-resistant and ESBL-
producing bacteria under Enterobacteriaceae have 
been listed as the ‘Priority 1: CRITICAL’ pathogens 
according to the WHO global priority pathogens 
list of antibiotic-resistant bacteria. Among these,  
E. coli is the most common producer of ESBL as well 
as the most common etiological agent of diarrhea 
and septicemia among neonatal calves. Diarrhea 
in young calves is a major concern due to the 
multi-factorial nature of the disease and hence it 
is imperative to identify the etiological agent and 
other risk factors associated with the calf diarrhea 
so that appropriate prevention and control 
measures may be implemented. In our study, 
STEC was the predominant pathotype identified. 
The most prevalent pathotypes detected from 
IDF, GBPUAT and CBF, IVRI were STEC and EPEC, 
respectively. Many studies were conducted 
throughout the world on the pathotyping of E. 
coli showing variations among predominance of 
pathotypes.28-31 The variation in the pathotypes 
and their predominance among calves may be 
due to the geographical locations, managemental 
practices, vaccinations and hygienic measures 
adopted at farms.32,33 
 The antibiogram revealed a higher 
occurrence of multidrug-resistant E. coli (75.41%) 
among the neonatal calves which indicates the 
indiscriminate antibiotic use in the farm. A similar 
study from India reported an incidence of 69.81% 
of MDR strains among E. coli.34 The resistance was 
highest against ceftazidime (84.35%), followed 
by cefotaxime (67.59%), ampicillin (64.24%) 
and tetracycline (59.77%). Similar findings were 
reported by Batabyal et al.,35 from India. 102 
commensal E. coli isolates were found to be 
MDR. The isolation of resistant commensal E. 
coli from healthy animals can be considered as 
an indicator of long-term resistance among the 
animal populations.36

 A total of 74 isolates were phenotypic 
ESBL producers and out of which, 69 were 
genotypically positive. blaAmpC was the predominant 
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ESBL gene (91.89%). A similar study was conducted 
by Ibrahim et al.,37 A high percentage of CTX-M 
genes (32.8%) among ESBL-producing E. coli was 
reported by Schmid et al.,38 Few of the non-ESBL 
phenotypes also carried ESBL genes indicating 
the role of such isolates in the dissemination of 
ESBL resistance in the herd without its phenotypic 
expression. The minor differences between the 
genotypic and phenotypic ESBL producers may be 
attributed to the presence of other genes encoding 
ESBL resistance.
 There has been a consistent increase in 
carbapenem usage nowadays due to the gradual 
rise in the ESBL resistance. In our study, 19 isolates 
were carbapenem-resistant but the expression 
of the resistance gene was much lower. Only six 
isolates (three blaVIM, two blaNDM and one blaBIC) 
were positive for the RG of carbapenem. In a 
similar study, 29.3% of isolates were carbapenem-
resistant and the blaVIM gene could be detected 
only in one isolate.39 There may be the existence 
of new variants of carbapenemases being present 
among the E. coli population which could not 
be detected by PCR-based gene identification 
methods. Whole genome-based approaches 
may be an alternative to characterize all genetic 
elements involved among resistant isolates. 68 
isolates were phenotypically quinolone resistant. 
Among these, 47.05% were genotypically positive 
for the quinolone resistance gene and qnrS 
(39.70%) was the predominant resistance gene 
among resistant isolates. the higher incidence 
of qnrS and qnrB genes was reported by other 
researchers also.40 
 We found a higher predominance of 
MDR, quinolone resistance and carbapenem 
resistance among commensals. These commensal 
bacteria may act as a reservoir of RG that may 
be transferable to other susceptible bacteria.7 
The isolation of resistant commensal E. coli from 
healthy animals can be considered as an indicator 
of long-term resistance among the animal 
populations.36 
 To designate a pathotypic E. coli as virulent 
and potentially pathogenic, it is imperative to 
perform the virulotyping.41 In India, studies on the 
virulotyping of E. coli strains from neonatal calves 
are very limited. Out of fourteen VG investigated, 
ompA (adhesin and invasin, participate in biofilm 
formation) was the predominant virulence gene 

(99.44%) followed by fimC (89.94%) and mat 
(89.38%) genes involved in cellular adhesion. ibeA 
and katP genes had the lowest incidence (in one 
and 19 isolates respectively). More than 90% of 
fimC-positive and less than 12% of katP-positive 
E. coli strains from calves were reported from 
Sweden and agree with our findings.42 Likewise, 
an analogous study reported ompA among 100% 
of the commensal E. coli and EPEC strains, and  
0% and 20.5% hrA among EPEC and commensal  
E. coli, respectively which is similar to our 
findings.20 A higher rate of occurrence of the 
traT gene among E. coli strains from diarrheic 
(56-70%) than the non-diarrheic feces (20-40%) 
is following our findings.43 Variations in results 
may be attributed to the location of the farms, 
the number of isolates, and the VG studied. The 
marginally higher occurrence of some of the VG 
among isolates from diarrheic calves indicates the 
role of such genes in the pathogenicity of diarrhea. 
The ehxA and katP genes were exclusively 
associated with pathotypes. 100% of STEC had 
traT, iha, mat and ompA gene. The traT, iha, efa1, 
mat, ompA and ehxA genes were possessed by 
all the EHEC pathotypes. 86.66% (n = 13/15) of 
EPEC contained iha gene and traT, fimC & ehxA 
were present in 80% (n = 12/15) of EPEC isolates. 
Higher occurrence of traT, iha, mat and ompA, 
efa1, ehxA genes among pathotypes indicates 
increased risk and severity of infections caused by 
the pathotypes and the importance of these genes 
in establishing more severe infection. 
 Pathotype-based clustering & locality-
based clustering and a high correlation among 
resistance to ceftazidime, cefotaxime, ESBL 
production & presence of blaAmpC gene were 
revealed among the isolates under the study 
Phylogenetic analysis revealed two major clusters 
with the most pathotypes falling under same 
cluster. However, there was lesser correlation of 
related genotypes to AMR and VF. This may indicate 
the role of horizontal transfer in maintaining 
the VF and AMR determinants which could be 
maintained in genetically unrelated genotypes. 
Virulence markers like traT, iss, ehxA and katP 
have been reported to be carried by plasmids.44-46 
Both ESBL and carbapenemase encoding genes 
are commonly located on mobile genetic elements 
enabling their dissemination. The findings 
almost coincide with other such investigations 
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that focused on the genetic resemblance of  
E. coli isolates from different sources.47-49 

CONCLUSION

 Our study envisages the virulotyping 
and AMR profiling of the Escherichia coli isolates 
recovered from neonatal calves. Most of the 
commensal E. coli under the study were MDR, 
indicating long-term resistance among the animal 
populations. The higher occurrence of RG among 
phenotypically resistant isolates signifies the 
association between phenotypic and genotypic 
resistance. The resistance profile indicated a high 
risk associated with indiscriminate antimicrobial 
use in animals. The predominance of STEC isolates 
carrying major VF substantiates their role in calf 
infections and may act as a potential source for 
human transmission. The presence of certain 
VG exclusively among pathotypes reveals the 
importance of such VF in the severity of infections. 
The study also revealed pathotype-based and 
locality-based clustering among the isolates and 
a high correlation of ESBL resistance and ESBL 
genes but a lesser correlation of related genotypes 
to AMR and VF. The study may be helpful in the 
development of a prophylactic vaccine against 
major pathotypes causing diarrhea and mortality 
among calves. 
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