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Abstract
Red ginger rhizome (Zingiber officinale var. Rubrum) and avocado leaves (Persea americana Mill.) are 
empirically known as one of the medicinal plants used in Taro Village, Gianyar Regency, Bali which 
have great potential in treating infectious diseases caused by antibiotic resistance, such as MRSA. This 
study aims to analyze the phytoconstituents and anti-MRSA potential contained in red ginger rhizome 
and avocado leaves extracts by assessing their inhibitory effects on three proteins related to MRSA 
resistance and virulence (PBAP2a, transglycosylase, and glycosyltransferase). Phytoconstituents of 
avocado leaf and red ginger extracts were analyzed using GC-MS. Molecular docking was performed 
in silico to determine the similarity properties of predicted drugs, bioactivity, toxicity, identification 
of active sites and validation of protein structures, and docking simulations were performed between 
compounds found in the extract and their target proteins. Phytoconstituent analysis revealed that 
avocado leaves and red ginger extracts as a whole have 43 types of compounds and 10 bioactive 
compounds each with beneficial drug-like properties. The compound 6,11-hexadecadien-1-ol from 
avocado leaves extracts was predicted to have hepatotoxic properties. There were at least 3 compounds, 
namely beta-bisabolene from avocado leaves extract, zingiberenol and gamma-curcumene from red 
ginger rhizome extract, showing the lowest binding affinity for the target protein. Red ginger rhizome 
and avocado leaves extracts showed valuable potential as anti-MRSA agents through the mechanism 
of inhibition of three resistance-related proteins, as predicted by in silico analysis.

Keywords: Antimicrobial Resistance, Penicillin-binding Protein-2a, Transglycosylase, Glycosyltransferase, MRSA

INTRODUCTION

 Antimicrobial resistance is one of the 
most significant public health issues facing the 
globe today (AMR). Antimicrobial resistance (AMR) 
is expected to cause significant clinical losses, 
severe economic consequences, and the loss of 
10 million lives annually by 2050, according to the 
highly cited review on antimicrobial resistance.1 
According to a recent systematic investigation, 
AMR bacteria were responsible for 4.95 million 
deaths in 2019, and 1.27 million of them were 
directly related to AMR.2 Based on the results 
of the Global Burden of Disease, Injuries, and 
Risk Factors (GBD) research, AMR was reported 
as the third most common cause of death after 
ischemic heart disease and stroke.3 The stages of 
the process of bacterial resistance to antibiotics 
include; (i) genetic mutations in bacteria; (ii) 
overuse of broad-spectrum antibiotics; and (iii) 
bacteria form a biofilm which functions as a 
protector so that the bacteria are resistant to 
antibacterials.4-6

 Methicillin-resistant Staphylococcus 
aureus (MRSA) is the second most common cause 
of antibiotic-resistant bacterial infections in many 
European countries,7 America,8 Africa,9 Australia7 
to Asian countries10 and including in the Southeast 

Asian region such as Indonesia.11-13 The prevalence 
of MRSA infection in the world varies from 1% to 
50% in each country. Asian countries have the 
highest prevalence of MRSA in the world, with 
about 50% of these bacteria causing circulatory 
infections.4 Research conducted in the Asia-Pacific 
region shows that the population with MRSA 
carriers reaches 23.5%.15 The prevalence of MRSA 
infection in Indonesia was reported around 0.3%-
51% with the highest prevalence found in Aceh 
(50%)16 and Jakarta reaching 47%.11

 MRSA can survive and develop well 
after being captured by phagocytic cells.17 The 
invading cells actually protect the bacteria from 
the bactericidal action of commercial antibiotics, 
thus causing resistance to infection. The current 
problem is that the treatment of intracellular 
infections requires long-term and intensive 
administration of antibiotics, however, most 
antibiotics are reported to fail to kill intracellular 
bacteria due to low intracellular accumulation, 
short retention, or reduced antibacterial action 
in cells. Interestingly, MRSA is also capable of 
producing a series of virulence factors that 
trigger infection, such as the penicillin-binding 
protein 2a (PBP2a) receptor, transglycosylase and 
glycosyltransferase. These receptors are known 
to have an important role as an inhibitor of the 
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activity of b-lactam antibiotics in the resistance 
mechanism of MRSA bacteria.18

 Natural antibacterial drugs have emerged 
as a replacement solution for conventional 
antibiotics in the treatment of drug-resistant 
intracellular bacteria. Natural bactericides 
have the advantage of being easily accessible 
and having a wider range of use than standard 
antibiotics.19,20 It should be noted that natural 
antibacterials exhibit bactericidal effects through 
multiple pathways, making the development of 
resistance an interesting challenge to be further 
studied through in silico studies on these virulence 
factor-associated proteins in MRSA. Gingerol, is 
an important component of red ginger rhizome 
extract which is popular as a natural antibacterial 
compound. Gingerol has high biocompatibility as 
a “green” bactericide and its antibacterial activity 
had been documented.21 Several previous studies 
stated that gingerol specifically inhibited the 
expression of several pore-forming toxins which 
are important components of bacterial virulence 
factors. However, the single antibacterial activity 
exerted by red ginger rhizome extracts is lower 
than other popular antibiotics, thereby reducing 
its practical use and efficacy.
 The combination of traditional Balinese 
medicine (Usaddha) to prevent and treat infectious 
diseases has recently attracted increasing 
attention. Therapy using a combination of natural 
ingredients was known as polyherbal therapy 
which had a tendency to produce synergistic 
therapeutic effects,22 which was caused by the 
action between the active ingredients contained 
in each ingredient.23 The ingredients stated 
refers to natural ingredients that have been used 
traditionally by people in Indonesia, especially in 
Taro Village, Gianyar Regency, Bali Province, whom 
for generations have used red ginger infusion 
combined with boiled avocado leaves which can 
empirically be effective in providing a therapeutic 
effect. The extracts of avocado leaves contain 
active antibacterial compounds such as alkaloids, 
saponins and flavonoids.24

 However, there are still no reports 
that reveal the phytoconstituent components 
of red ginger and avocado leaves and the 
effectiveness of their active compounds in 
inhibiting proteins that produce virulence factors 

in MRSA. Molecular docking using an in silico 
approach is a computational method used for the 
discovery of new drug candidates.25 This makes it 
possible to discover and identify key compounds 
with therapeutic potential, namely evaluation of 
effectiveness, prediction of molecular interactions, 
and drug toxicity.26 Some in silico studies have 
reported the effectiveness of certain traditional 
medicines, such as Stachytarpheta jamaicensis 
which could be found in Indonesia, as traditional 
plants with antibacterial active compounds. Based 
on previous report, docking in silico using Autodock 
Vina integrated with PyRx 8.0 showed that S. 
jamaicensis, a wild plant from the Verbenanceae, 
has the best binding affinity with luteolin-G1mS 
complex. Therefore, in this study, the extracts of 
red ginger rhizome and avocado leaves were used 
to screen their phytoconstituent composition using 
GC-MS and several phytochemicals were selected 
for in silico screening and evaluated for their 
interactions on the penicillin-binding protein 2a 
(PBAP2a), transglycosylase and glycosyltransferase 
receptors in MRSA. This research is very useful for 
revealing new phytochemicals from local plants 
that can play a role in the development of natural 
antibacterials through inhibitor mechanisms.

MATERIALS AND METHODS

Plant sample extraction and phytoconstituent 
profiling
 The red ginger and avocado leaves used 
in this research came from the Satya Kencana 
Banjar Tebuana Farmers Group Garden, Taro 
Village, Tegalalang District, Gianyar Regency, Bali 
Province. The voucher specimens were preserved 
in the “Eka Karya” Bali-BRIN Botanical Garden 
Characteristics Laboratory (accession no: ELSA 
35877 and ELSA 35901). Fresh red ginger rhizomes 
and avocado leaves were washed with clean water 
to remove foreign contaminants or organic matter. 
The samples were dried at room temperature to 
remove water before being dried for 24 hours 
in a 50°C oven. To obtain powder preparations, 
the dried samples (simplisia) were pulverized 
using a grinder and sieved with a 20-mesh sieve. 
The extraction process was carried out using a 
maceration method using ethanol 96% in a ratio of 
1:10 w/v (200 grams of simplicia powder with 2000 
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mL of solvent) for 3 × 24 hours. It was evaporated 
using a vacuum rotary evaporator until a thick 
extract was produced,27 which was then combined.
 The phytoconstituent profile of red 
ginger rhizome and avocado leaves extracts was 
evaluated using GC-MS (QP 2010, Shimadzu). The 
bioactive compounds contained in the extract 
were identified by comparing the retention time 
and patterns of mass peak with reference to the 
database of the National Institute of Standards 
and Technology (NIST) and the Wiley Registry of 
Mass Spectral Data, New York.28 Compounds were 
identified by comparing sample MS spectra with 
the WILEY229 Library and the NIST62 database.29,30

In Silico analysis
Ligand preparation
 The chemical compounds used in this 
research came from the results of chromatography 
with ethanol solvent on avocado leaves consisting 
of benzene, 1-(1,5-dimethyl-4-hexenyl)-4-methyl- 
(CAS), zingiberene- (CAS), E,E-alpha-farnese, 
beta-bisabolene- (CAS), beta-sesquiphellandrene- 
(CAS), neophytadiene, tetradecanoic acid, 
ethyl ester- (CAS), 6,11-hexadecadien-1-ol, 
9,12-octadecadienoic acid, methyl ester, (E,E)- 
(CAS), and ethyl oleate. Meanwhile, red ginger 
rhizome extracts consist of octanal (CAS), 
endo-borneol, decanal-(CAS), 2,6-octadienal, 
3,7-dimethyl-, (Z)-, geraniol, gamma-curcumene, 
widdrene, zingiberenol, d-nerolidol, and trans-6-
shogaol. Ligand sample preparation was carried 
out through the PubChem database (https://
pubchem.ncbi.nlm.nih.gov/) to obtain several 
information such as CID, compound link, and 3D 
structure with structure data format (sdf) files.31

Protein preparation
 The targets in this research are several 
proteins from MRSA consisting of penicillin-
binding protein 2a (PBP2a) (RCSB ID: 5M18), 
transglycosylase (RCSB ID:  3VMT),  and 
glycosyltransferase (RCSB: 6FTB). PBP2a in MRSA 
has an important role as an inhibitor of β-lactam 
antibiotic activity in the resistance mechanism. The 
activity of transglycosylase and glycosyltransferase 
enzymes plays a role in cell wall synthesis in MRSA, 
both of which have a relationship in the resistance 
mechanism, which triggers bacteria to adapt to 
various environments including antibiotics.32 The 

3D structure of each target was obtained from 
RCSB PDB (https://www.rcsb.org/) with pdb files.

Drug-likeness assay 
 The similarity of the activity of the 
query compound with the drug molecule is 
predicted via the SCFBio server (http://www.
scfbio-iitd.res.in/software/drugdesign/lipinski.
jsp) using the Lipinski Rule of Five’s method. 
These rules refer to physicochemical parameters 
consisting of molecular mass, lipophilicity, donor-
acceptor hydrogen bonds, and molar refractivity. 
Compounds with positive prediction results are 
categorized as drug-like molecule.33

Prediction of bioactivity and toxicity probabilities
 The bioactivity test in this study refers 
to the probability of being antibacterial, the 
test was carried out via the PASS Online server 
(http://www.pharmaexpert.ru/passonline/). 
This prediction refers to an activation probability  
Pa ≥ 0.3  to trigger the emergence of antibacterial 
activity of the query compound and the Pa value 
must be greater than the inhibition probability 
(Pi).34 Toxicity predictions for compounds with 
antibacterial activity values, namely Pa ≥ 0.3, 
are carried out via the ProTox-II server (http://
tox.charite.de/protox_II/), the toxicity prediction 
results obtained are the possible carcinogenicity, 
hepatoxicity and LD50 values of the query 
compounds.35

Molecular docking simulation
 Molecular docking simulation Ligands in 
sdf format were minimized for increased structural 
flexibility and conversion of sdf files into protein 
databank format (PDB) via OpenBabel v2.3.2 
software. The energy minimization process is 
included in the preparation stage for molecular 
docking simulations with specific targets. 
Sterilization of target proteins was carried out 
in this study using PyMOL v.2.5.2 software  
(Schrodinger, Inc., USA) with an academic license. 
Sterilization of 3D structures refers to the removal 
of water molecules on the target for preparation 
and optimization of molecular docking. Docking 
analysis aims to identify the inhibitory activity of 
the ligand on its target. This refers to the binding 
affinity value. The increasingly negative binding 
affinity value triggers an increase in the binding 
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Table 1. Phytoconstituents of red ginger rhizome and avocado leaf extracts were identified by GC-MS analysis

No. Chemical compound Retention    Peak Area (%)  Formula
  Time
   Red Avocado 
   Ginger leave 

1 Octanal (CAS) 6.120 2.01 - C8H16O
  6.111 - -
2 endo-Borneol 9.765 1.19 - C10H18O
3 Decanal (CAS) 10.441 4.51 - C10H20O
4 2,6-Octadienal, 3,7-dimethyl-, (Z)- 11.436 1.26 - C10H16O
5 GERANIOL 11.958 2.41 - C10H18O
6 2,6-Octadien-1-ol, 3,7-dimethyl-,  15.147 1.85 - C12H20O2
 acetate (CAS)
7 gamma-curcumene 17.790 2.10 - C15H24
  17.775
8 Benzene, 1-(1,5-dimethyl-4-hexenyl)- 17.971 6.67 3.38 C15H22
 4-methyl-
9 trans-Caryophyllene 18.390 13.75 - C15H24
10 Thujopsene 18.594 8.46 - C15H24
11 alpha-Himachalene 18.668 3.28 - C15H24
12 (+)-Aromadendrene 19.112 10.84 - C15H24
13 Elemol 19.841 0.63 - C15H26O
14 d-Nerolidol 20.751 1.54 - C15H26O
15 zingiberenol 21.345 1.15 - C15H26O
16 1,2-diethoxy-4-ethylbenzene 22.887 20.93 - C12H18O2
17 alpha-Bisabolol 23.263 1.47 - C15H26O
18 6,10-Dodecadien-1-yn-3-ol, 3,7, 23.480 0.99 - C15H24O
 11-trimethyl- (CAS)
19 Campherenone 26.153 1.32 - C15H24O
20 9,10-Dimethyltricyclo[4.2.1.1 27.525 1.10 - C12H20O2
 (2,5)]decane-9,10-diol
21 Ethyl myristate 29.444 2.34 - C16H32O2
22 Oleic acid 32.839 3.54 - C20H38O2
23 (E)-4-(2',6',6'-Trimethyl-1',2'- 34.356 1.82 - C14H22O2
 epoxycyclohexyl)-3-penten-2-one
24 Shogaol 35.669 2.77 - C17H24O3
24 Zingiberene (CAS) 18.156 - 3.33 C15H24
26 Alpha-Faresenne 18.405 - 1.03 C15H24
27 beta-Bisabolene (CAS) 18.487 - 1.66 C15H24
28 beta-Sesquiphellandrene (CAS) 18.922 - 2.67 C15H24
29 Neophytadiene 26.139 - 0.54 C20H38
30 Tetradecanoic acid, ethyl ester (CAS) 29.464 - 29.12 C16H32O2
31 6,11-Hexadecadien-1-ol 31.096 - 3.12 C16H30O
32 9,12-Octadecadienoic acid, methyl 32.727 - 3.84 C19H34O2
 ester, (E,E)- (CAS)
33 Ethyl Oleate 32.864 - 36.28 C20H38O2
34 Dicyclohexyl-4,4'-diol 33.102 - 0.49 C12H22O2
35 Heptadecanoic acid, ethyl ester (CAS) 33.303 - 4.27 C19H38O2
36 2,5-Furandione, 3-(dodecenyl)dihydro- 34.372 - 1.26 C16H26O2
37 Hexadecadienoic acid, methyl ester (CAS) 34.500 - 1.22 C17H30O2
38 Hexadecanoic acid, 2-hydroxy-1,3- 35.240 - 1.78 C35H68O5
 propanediyl ester (CAS)
39 Hexadecanoic acid, ethyl ester (CAS) 36.850 - 0.90 C18H36O2
40 D-Mannitol 36.885 - 0.55 C28H58O12
41 cis-9-Hexadecenal 37.559 - 0.65 C16H30O
42 13-Octadecenal, (Z)- 38.319 - 2.79 C18H34O
43 9-Eicosynee 39.369 - 1.09 C20H38
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strength of the ligand to the target. This research 
uses PyRx v1.0.0 software (Scripps Research, USA) 
with an academic license for molecular docking 
simulations carried out with a grid position 
covering all targets at the XYZ center position and 
dimensions.36

Chemical bond interactions
 Identification of the position and type 
of chemical bond interactions in the ligand-
protein complex was carried out using LigPlot 
+v.2.2 software. Weak bonds such as hydrogen 
and hydrophobic can be formed when a ligand 
binds to the target domain, this aims to trigger a 
biological response such as inhibition of activity. 
The existence of these bonds can affect the 
stability of drug candidates.37

Visualization of 3D structure
 The 3D structure from the molecular 
docking simulation results is displayed in the 
form of cartoons, transparent surfaces, and sticks 
with color selection using PyMOL v.2.5.2 software 
(Schrodinger, Inc., USA) with an academic license. 
Molecular visualization aims to display the 3D 
structure of ligand-protein with a representative 
appearance through structural and color selection 
methods with publication standards.38 Table 
1 below shows the detailed identification and 
reported concentrations of chemicals in each red 
ginger and avocado leaves extract solvent.

RESULTS 

 In this research, the extraction was carried 
out using ethanol solvent to evaluate the impact 
of solvent polarity on the bioactivity produced 
from each extract. GC-MS analysis was used to 
determine the bioactive compound profile of each 
extract. In general, 43 chemical components were 
found with the following phytochemical content 
of red ginger rhizome extract: 1,2-diethoxy-4-
ethylbenzene (20.93%), trans-caryophyllene 
(13.75%),  (+)-aromadendrene (10.84%), 
thujopsene (8.46%), benzene, 1-(1,5-dimethyl-4-
hexenyl)-4-methyl- (6.67%), decanal (4.51%), oleic 
acid (zingiberenol (1.15%)) and gamma-curcumin 
(2.10%). Meanwhile, in the extracts of avocado 
leaves, the main elemental composition is ethyl 
oleate (36.28%), tetradecanoic acid, ethyl ester 
(29.12%), 9,12-octadecadienoic acid, methyl ester, 
(E,E)- (3.84%), and benzene, 1-(1,5-dimethyl-4-
hexenyl)-4-methyl- (3.38%).
 The inclusion criteria for phytochemical 
compounds used as bioactive compounds must 
meet pharmacological and pharmacodynamic 
criteria. Based on their similarities as candidate 
medicinal ingredients, there are ten compounds 
each that meet the criteria of avocado leaves and 
red ginger rhizome extracts (Table 2). The target 
proteins used in this study were PBP2a (RCSB ID: 
5M18), Transglycosylase (RCSB ID: 3VMT), and 
Glycosyltransferase (RCSB: 6FTB). 3D structure 

Figure 1. Visualization of target 3D structures in MRSA bacteria. (A) PBAP2a; (B) Transglycosylase; (C) 
Glycosyltransferase
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rendered via PyMOL v.2.5.2 (Schrodinger, Inc., 
USA) with an academic license with ster (Figure 1).
 Lipinski Rule’s of Five plays a role in 
identifying the similarity of query compounds 
with drug molecules through physicochemical 
parameters. These rules state that a query 
compound that is categorized as a drug-like 
molecule must fulfill at least two rules of five. 
These rules refer to the molecular mass must be 
below 500 Daltons, the high lipophilicity (LogP) 
must have a value smaller than 5, the number of 
donor hydrogen bonds must be less than 5 and 
the molar refractivity must have a value between 
40-130.33 The drug-likeness prediction results for 
query ligands from avocado leaves and red ginger 
show that all chemical compound samples are 
drug-like molecules because they fulfill at least 
two rules in the Lipinski Rule’s of Five (Table 3). 
 Bioactivity prediction in this study refers 
to the probability level of antibacterial activity 

ability of the query compound which is indicated 
by the values of Pa dan Pi.34 Compounds with 
values of Pa ≥ 0.3 and Pa ≥ Pi show computationally 
proven antibacterial capabilities. The results of 
identifying bioactivity and toxicity in compounds 
from avocado leaves showed zingiberene (CAS), 
E,E-alpha-farnesene, beta-bisabolene (CAS), 
beta-sesquiphellandrene (CAS), neophytadiene, 
9,12-octadecadienoic acid, methyl ester, (E,E)- 
(CAS), and compounds from red ginger extracts 
such as 2,6-octadienal, 3,7-dimethyl-, (Z)-, 
geraniol, gamma-curcumene, zingiberenol, and 
d-nerolidol have antibacterial activity and do not 
have carcinogenicity and hepatoxicity type toxins. 
The compound 6,11-hexadecadien-1-ol from the 
extract of avocado leaves was actually antibacterial 
but not used for further analysis because it had 
hepatoxicity type toxin activity (Table 4). 
 The molecular docking method used in 
this research is a blind type, ignoring the active 

Table 3. The results of druglikeness prediction

Source Compounds MM LogP HBD HBA MR Probable
  (<500 Dalton) (<5) (<5) (<10) (40-130)

Avocado Benzene, 1-(1,5- 204.000 4.924 0 0 68.282 Drug-like molecule
leaves dimethyl-4-hexenyl)-
 4-methyl- (CAS)
 Zingiberene (CAS) 204.000 4.891 0 0 68.832 Drug-like molecule
 E,E-ALPHA-FARNESENE 204.000 5.201 0 0 70.992 Drug-like molecule
 beta-Bisabolene (CAS) 204.000 5.035 0 0 68.902 Drug-like molecule
 beta-Sesquiphell- 204.000 4.891 0 0 68.832 Drug-like molecule
 andrene (CAS)
 Neophytadiene 278.000 7.167 0 0 94.055 Drug-like molecule
 Tetradecanoic acid,  256.000 5.250 0 2 77.710 Drug-like molecule
 ethyl ester (CAS)
 6,11-Hexadecadien-1-ol 280.000 5.582 0 2 86.756 Drug-like molecule
 9,12-Octadecadienoic 280.000 5.884 1 2 86.993 Drug-like molecule
 acid, methyl
 ester, (E,E)- (CAS)
 Ethyl Oleate 310.000 5.705 0 2 108.268 Drug-like molecule
Red Octanal (CAS) 128.000 2.545 0 1 39.439 Drug-like molecule
Ginger endo-Borneol 154.000 2.193 1 1 45.235 Drug-like molecule
 Decanal (CAS) 156.000 3.325 0 1 48.673 Drug-like molecule
 2,6-Octadienal, 3,7- 152.000 2.877 0 1 48.485 Drug-like molecule
 dimethyl-, (Z)-
 GERANIOL 154.000 2.671 1 1 49.507 Drug-like molecule
 gamma-curcumene 204.000 5.035 0 0 68.902 Drug-like molecule
 Widdrene 204.000 4.559 0 0 64.652 Drug-like molecule
 Zingiberenol 222.000 4.086 1 1 70.316 Drug-like molecule
 d-Nerolidol 222.000 4.396 1 1 72.476 Drug-like molecule
 trans-6-shogaol 276.000 4.038 1 3 81.268 Drug-like molecule
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site to screen for other potential binding sites on 
the target. Ligand activity is shown through the 
binding affinity value. Binding affinity refers to 
the negative binding energy formed in a ligand-
protein complex. This energy works based on 
Gibbs’ law, namely, the more negative it is, the 
stronger the bonding interactions will trigger 
and trigger stability in the molecular complex 
formed. Ligands with the most negative binding 
affinity values can trigger inhibitory activity on 
targets.39,40 Grid docking plays a role in directing 
ligand binding to the target; the grid position in 
this study consists of PBP2a center (Å) X: 6.162 
Y: -13.287 Z: -50.318 Dimension (Å) X: 115.233 Y: 
92.017 Z: 134.318, transglycosylase center (Å) X: 
-22.275 Y: -2.201 Z: -3.133 Dimension (Å) X: 76.625 
Y: 82.946 Z: 109.053 and glycosyltransferase center 
(Å) X: -35.030 Y: -27.001 Z: 62.281 Dimension (Å) 
X: 47.826 Y: 52.426 Z: 51.292.
 Visualization of ligand-target protein 
interactions is displayed by staining proteins with 

different ligands. The chemical bond interactions 
formed in the complex resulting from docking are 
weak bonds such as hydrogen and hydrophobic 
which play a role in triggering biological responses, 
for example target inhibitory activity by ligands.41,42 
The results of the research show that all antibiotic 
candidate compounds from the extracts of 
avocado leaves and red ginger, namely beta-
bisabolene (CAS), zingiberenol, and gamma-
curcumene can form weak bonds such as hydrogen 
and hydrophobic; this triggers inhibitory activity at 
the target receptor on MRSA (Figure 2).

DISCUSSION

 Several  chemicals  found in high 
concentrations in each extract material can be 
investigated for their potential as compound 
identities in an effort to standardize materials 
through the use of finding compound identity 
markers. Several compounds from each extract 

Table 4. Bioactivity and toxicity prediction results

Source Compound     Antibacterial        Toxicity Information
      Activity

  Pa Pi Carcinogenicity Hepatoxicity LD50
      (mg/kg)

Avocado Benzene, 1-(1,5-dimethyl- - - - - -
leaves 4-hexenyl)-4-methyl- (CAS) 
extracts Zingiberene (CAS) 0.416 0.026 Inactive Inactive 1680
 E,E-Alpha-Farnesene 0.459 0.021 Inactive Inactive 3650
 beta-Bisabolene (CAS) 0.413 0.027 Inactive Inactive 4440
 beta-Sesquiphellandrene (CAS) 0.441 0.023 Inactive Inactive 5000
 Neophytadiene 0.363 0.040 Inactive Inactive 5050
 Tetradecanoic acid, ethyl ester (CAS) - - - - -
 6,11-Hexadecadien-1-ol 0.310 0.056 Inactive Active 1190
 9,12-Octadecadienoic acid, methyl 0.335 0.047 Inactive Inactive 10000
 ester, (E,E)- (CAS)
 Ethyl Oleate - - - - -
Red Octanal (CAS) - - - - -
ginger endo-Borneol - - - - -
extracts Decanal (CAS) - - - - -
 2,6-Octadienal, 3,7-dimethyl-, (Z)- 0.371 0.038 Inactive Inactive 500
 Geraniol 0.424 0.025 Inactive Inactive 2100
 gamma-curcumene 0.367 0.039 Inactive Inactive 1680
 Widdrene - - - - -
 Zingiberenol 0.463 0.020 Inactive Inactive 2340
 d-Nerolidol 0.462 0.020 Inactive Inactive 5000
 trans-6-shogaol - - - - -



  www.microbiologyjournal.org2297Journal of Pure and Applied Microbiology

Sari et al | J Pure Appl Microbiol. 2024;18(4):2288-2303. https://doi.org/10.22207/JPAM.18.4.01

were screened to determine their effectiveness 
in silico in inhibiting receptors that generate 
virulence factors in MRSA. Several results of 
previous studies reported something similar to 
these results. Monoterpene and sesquiterpene 
hydrocarbon compounds were found to dominate 
the chemical composition of wild ginger extract.43

 The bioactive compounds, including 
geranial, zingiberene, and -sesquiterpene, have 
been shown to be the main components in 
ginger plants, ranging from 10-60%.44,45 Apart 

from avocado leaves extracts, previous research 
also revealed that the bioactive compounds 
extracted from avocado seed powder are mostly 
terpenes and fatty acid derivative esters which 
have been proven to have bioactivity to alleviate 
nephrotoxicity and hepatoprotective properties 
induced by cyclosporine-A (CsA).46,47 The marker 
compound for avocado seed extract is known 
to be flavon C-glycoside based on its metabolite 
characteristics. Naringenin is one of the main 
flavanones detected together with its glycosides 

Figure 2. 2D visualization of molecular interactions of ligands with targets. (A) PBAP2a_beta-bisabolene (CAS); (B) 
Transglycosylase_beta-bisabolene (CAS); (C) Glycosyltransferase_beta-bisabolene (CAS); (D) PBAP2a_zingiberenol; 
(E) Transglycosylase_zingiberenol; (F) Glycosyltransferase_gamma-curcumene



  www.microbiologyjournal.org2298Journal of Pure and Applied Microbiology

Sari et al | J Pure Appl Microbiol. 2024;18(4):2288-2303. https://doi.org/10.22207/JPAM.18.4.01

and is a unique marker with anti-MRSA activity. 
Both red ginger rhizomes and avocado leaves 
have potential uses as herbal components or 
standardized herbal therapies, according to the 
results of this study.
 The selection of these proteins was based 
on their potential in MRSA physiology in producing 
virulence factors and resistance to antimicrobial 
agents. PPB2A is a peptidoglycan transpeptidase 
that works together with the PBP2 transglycosylase 
domain from S. aureus, which accelerates cell wall 
production in the presence of b-lactam antibiotics, 
thereby allowing the bacteria to survive and 
develop. Transglycosylase is an important cleavage 

enzyme involved in the peptidoglycan turnover of 
Gram-negative bacteria.48 This enzyme belongs 
to the glycoside hydrolase family, catalyzing the 
non-hydrolytic cleavage of the glycosidic linkage 
between MurNAc and GlcNAc in peptidoglycan, 
producing muropeptide 1,6-anhydromuramyl 
disaccharide.49 Furthermore, glycosyltransferase 
is a component of cell wall biosynthetic enzymes 
that has been studied to play an important role 
in the final phase of bacterial peptidoglycan 
synthesis.50 Glycosyltransferases are responsible 
for the elongation of glycan strands using 
lipid-linked disaccharides-pentapeptides as 
substrates. A group of bifunctional high molecular 

Figure 3. 3D structure resulting from docking of the ligand with the target. Ligands from avocado leaves extracts 
(green) and red ginger rhizome extracts (magenta). (A) PBAP2a_beta-bisabolene (CAS); (B) Transglycosylase_beta-
bisabolene (CAS); (C) Glycosyltransferase_beta-bisabolene (CAS); (D) PBAP2a_zingiberenol; (E) Transglycosylase_
zingiberenol; (F) Glycosyltransferase_gamma-curcumene
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weight penicillin-binding proteins possessing 
glycosyltransferase activity has been identified in 
S. aureus.51

 The drug-likeness prediction results 
in this study certainly have a greater number 
of compounds that have the potential to be 
medicinal compounds when compared to similar 
studies. Garcinia atroviridis phytochemical 
compounds were screened in silico as anti-Dengue 
Virus (DENV) agents based on drug similarities, 
only six of the 24 compounds met the criteria, 
including dodecanoic acid, atroviridin, naringenin, 
kaempherol, quercetin, and gentisein.52 Similar 
research also revealed in silico studies of herbal 
extracts (basil, thyme, rosemary, and eucalyptus) 
on their inhibition of b-lactamase of S. aureus 
which showed that all the chemical compounds 
used met the Lipinski Rule’s of Five criteria of not 
finding negative results in ADMET analysis.53

 Related studies have reported on the 
use of computational techniques to predict the 
toxicity of several traditional Chinese medicine 
(TCM) formulations and most of the studies are 
concerned with the prediction of hepatotoxicity. 
This may be related to the fact that hepatotoxicity 
data are more widely available in public databases 
than other toxicity categories. However, here we 
add predictions of the toxicity of ligand compounds 
to their possible carcinogenic properties and LD50. 
There are also several other toxicities that still 
need to be discussed, including cardiotoxicity, 
hemolytic toxicity, and nephrotoxicity.54-56

 The results of the molecular docking 
simulation show that the compound beta-
bisabolene (CAS) from avocado leaves extract has 
the most negative binding affinity for the three 
targets, then from red ginger extract, zingiberenol, 
has the most negative binding affinity for PBP2a 
and transglycosylase, and gamma-curcumene 
on glycosyltransferase (Table 5). The lowest 
or most negative binding affinity is needed to 
support the stability of interactions during cellular 
processes and has activity as an inhibitor on target 
receptors.57 However, inhibition of this compound 
is still needed through in vitro and in vivo assays in 
future research. Potential compounds as antibiotic 
candidates from the extracts of avocado leaves 
and ginger rhizomes which act as target inhibitors 
consist of beta-bisabolene (CAS), zingiberenol, 
and gamma-curcumene. The molecular complex 
resulting from docking of the ligand-protein 
complex with the most negative binding affinity 
is displayed through the structure transparent 
surfaces, cartoons, and sticks (Figure 3).
 The compound beta-bisabolene is 
commonly found in essential oils of medicinal 
plants with natural antimicrobial and antioxidant 
activity. Apart from the avocado leaves extracts 
in this study, the compound beta-bisabolene can 
also be found in carrots, lemons, cubes, oranges 
and oregano and is generally used as a natural 
flavoring in beverage products.58 The Zingiberenol 
compound was reported to be found in the GC-MS 
results of Chinese ginger essential oil extract at RT 

Table 5. Molecular docking results of avocado leaves extract and red ginger rhizome compounds against PBP2a, 
transglycosylase and glycosyltransferase receptors in MRSA

Source CID Compounds    Binding Affinity (kcal/mol)

   PBP2a Trans- Glyco-
    glycosylase syltransferase

Avocado 92776 Zingiberene (CAS) -5.6 -5.4 -5.4
leaves 5281516 E,E-alpha-farnese -5.5 -5.0 -5.4
extracts 10104370 beta-bisabolene (CAS) -5.7 -5.7 -5.9
 519764 beta-sesquiphellandrene (CAS) -5.5 -5.5 -5.2
 10446 Neophytadiene -5.4 -4.5 -4.1
 3931 9,12-octadecadienoic acid,  -5.2 -4.6 -5.3
  methyl ester, (E,E)- (CAS)
Red 8843 2,6-Octadienal, 3,7-dimethyl-, (Z)- -5.2 -5.0 -4.9
ginger 637566 Geraniol -5.0 -5.0 -5.0
extracts 12304273 gamma-curcumene -6.0 -5.3 -5.9
 13213649 Zingiberenol -6.2 -6.0 -5.5
 5356544 d-Nerolidol -5.8 -5.2 -5.0
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29.409 and 29.830.59 The zingiberenol compound 
significantly inhibited the effects of nitric oxide 
production in RAW 264.7 macrophages induced 
with LPS, indicating the immunomodulatory 
activity of this extract.60 The compound curcumene 
was reportedly identified in the essential oil of the 
rhizome of Curcuma longa, C. aeruginosa, and C. 
longa. In addition, in vitro and in silico testing of 
this compound showed anti-dengue fever activity 
by inhibiting DENV-2 NS2B-NS3.61 This report 
may be the first to report the compounds beta-
bisabolene (avocado leaves) and zingiberenol 
and gamma-curcumene (red ginger rhizomes) in 
inhibiting the virulence factors of MRSA in silico.

CONCLUSION

 The total phytoconstituents obtained 
from the extracts of avocado leaves and red 
ginger rhizome were 43 types of compounds. 
Prediction of bioactivity results show in our study 
show that the compound 6,11-hexadecadien-1-ol 
from avocado leaves extracts has computationally 
hepatotoxic properties. There are at least three 
compounds, namely beta-bisabolene, from 
avocado leaves extract, zingiberenol and gamma-
curcumene, from red ginger rhizome extracts 
which are able to bind to the active site of 
MRSA resistance-related proteins (PBAP2a, 
transglycosylase and glycosyltransferase) with 
lower binding affinity values than inhibitors. By 
observing the in silico data and the potential active 
compounds contained in avocado leaves and red 
ginger rhizome extracts, a promising antibacterial 
agent could possibly be obtained from these 
traditional plants to be utilized against MRSA. The 
mechanism of action played by each compound 
is through inhibition of three proteins related to 
antibiotic resistance controlled by MRSA. Further 
researches using in vitro and in vivo approaches 
are very important and recommended to ensure 
the synergistic effect of these two extracts against 
MRSA infections.
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