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Abstract
Antibiotic resistant bacteria are present in various environments and are concerning for public health. 
Antibiotic resistance genes in soil may proliferate throughout different ecosystems and be acquired 
by pathogens that pose health risks to humans and animals. This study investigated the antibiotic 
resistance of cultivable bacteria isolated from livestock-exposed and unexposed areas in a former perlite 
mining area in the Fa-La-Mee Mountain range, Lopburi, Thailand. Soil samples were collected in five 
different locations. Soil bacteria were isolated and tested for susceptibility against seven antibiotics, 
followed by 16S rRNA gene-based identification. A total of 56 bacterial isolates were isolated from the 
perlite-rich soil samples, including 34 isolates from the livestock-exposed areas and 22 isolates from 
the unexposed areas. Most of the isolates were resistant to cefepime (26.5% in exposed areas and 
22.7% in unexposed areas) and ampicillin (23.5% in exposed areas and 22.7% in unexposed areas). 
16S rRNA gene sequences revealed that most of the resistant bacteria isolated from perlite-rich soil 
were Bacillus spp. A multidrug-resistant isolate of Bacillus cereus resistant to ampicillin, trimethoprim/
sulfamethoxazole, and cefepime was found in a livestock-unexposed area. The majority of the 
culturable antibiotic-resistant bacteria isolated from perlite-rich soil were cefepime-resistant Bacillus. 
Interestingly, the pattern of antibiotic resistance in exposed and unexposed areas was not different, 
which indicated that antibiotic resistance in perlite-rich soil is likely caused by other factors, such as 
physicochemical characteristics and/or the microbial population of the soil rather than by antibiotics 
used in livestock husbandry.
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INTRODUCTION

 Antimicrobial resistance (AMR) is a 
global issue that affects human, animal, and 
environmental health. According to the one health 
concept, AMR can spread from the environment 
to humans and have negative effects on human 
health.1,2 Previous studies have demonstrated that 
populations of antibiotic-treated livestock freely 
reared in local grassland carry residual antibiotics 
or antibiotic resistant bacteria/genes that spread 
AMR in the environment.1,3

 Perlite is a type of volcanic aluminosilicate 
glass that is formed by rapid cooling of lava 
or magma. Perlite is used in many industries, 
including for concrete fillers, thermal insulators, 
catalysts, filter, and agriculture because of its low 
density, high porosity, chemical inertness, and lack 
of toxicity.4 Perlite mining occurs in many countries 
around the world, including China, Turkey, Greece, 
USA, Japan, Italy, Hungary, and Macedonia.4

 A perlite mine in Thailand was operated in 
the Fa-La-Mee mountain range, Lopburi province 
between 1992 to 2017.5 The Fa-La-Mee mountain 
range was the only economic source of perlite in 
Thailand.6 Following the concession ending, the 
mining area was left without any restoration. After 
being abandoned for several years, the flat parts 
of the mine underwent natural rehabilitation and 
gradually turned to grasslands which were then 
used for livestock grazing. Antibiotics such as 
amoxicillin, kanamycin, gentamicin, streptomycin, 
ceftiofur, and sulfamethoxazole/trimethoprim, 
readily available in local veterinary pharmacies, 
are commonly used by farmers in the area to treat 
livestock infections without veterinary oversight. 
Importantly, many of these antibiotics are identical 
to, share the same mode of action with, or belong 
to the same antibiotic family as those used in 
human medicine.7,8 Improper use of antibiotic in 
livestock farming can increase the spread of AMR 
in the environment and raise the risk of cross-
resistance in human pathogens.1,9

 P rev ious  reports  demonstrated 
that mining activities disrupt soil microbial 
communities and can co-select for antibiotic 
resistance genes in bacteria. Mining waste, 
particularly heavy metals, can induce stress in 
bacteria, leading to hypermutation and increased 
antibiotic resistance.10,11 In this study, the flat 

parts of the mine were used for livestock grazing. 
The presence of grazing animals also affects 
the soil physicochemical properties, microbial 
communities as well as the spread of antibiotic 
resistance genes.12 Several studies reported that 
waste from antibiotic-treated livestock is associated 
with a rise in antibiotic-resistant bacteria in the 
soil, especially Enterobacteriaceae.3,13-15 Certain 
remaining areas of the mine remains steep slope 
or covered in dry dipterocarp forest which are 
inaccessible to livestock and thus remain free from 
contamination by commercial antibiotics.
 As perlite naturally deposits near the 
Earth’s surface, the topsoil in both livestock-
exposed and -unexposed areas contains a high 
amount of perlite, resulting in a distinct perlite-rich 
soil.16 Previous studies have demonstrated that 
plants cultivated in perlite tend to harbor higher 
levels of Enterobacteriaceae compared to those 
grown in other substrates. These findings suggest 
that perlite may provide a suitable environment 
for the proliferation of Enterobacteriaceae.17,18 
Although perlite mining has occurred in several 
countries, data on the spread of AMR in perlite-rich 
soil are limited. Due to the unique characteristics 
of perlite, the grazing animal may influence the 
soil bacterial communities as well as increase the 
level of the soil AMR. Therefore, in this study, we 
investigated AMR in perlite-rich soil by comparing 
areas with livestock exposure to those without. 
 In this study, the levels of antibiotic-
resistant bacteria from livestock-exposed areas 
and unexposed areas were evaluated to determine 
the relationship between AMR and livestock 
exposure in perlite-rich soil.

MATERIALS AND METHODS

Study sites and soil sample collection
 The soil samples were collected from the 
Fa-La-Mee mountain range in the Sa Bot district 
of Lopburi province, Thailand. Soil samples were 
collected in December 2022 (dry season) from 
livestock-exposed and unexposed areas in five 
different locations around the Fa-La-Mee mountain 
range (Figure 1). These locations were grazed by 
different herds of livestock. At each location, two 
areas were designated: one with livestock-exposed 
and one without. This resulted in a total of 10 
sampling sites (5 exposed and 5 unexposed). To 
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minimize bacterial cross-contamination, sampling 
sites in livestock-exposed and unexposed zones 
were located at least 10 meters apart and 
separated by natural barriers, such as forests or 
steep slopes. Five replicated plots, (1 × 1 m) located 
more than 2 m apart were selected at each of the 
sampling sites. Before sample collection, topsoil 
debris were removed. Five samples were collected 
at a depth of 10 cm in each plot. The samples were 
combined into one composite sample and sieved 
through a 2 mm mesh to remove large debris and 
organic litter. The sampling method was adapted 
from a previous study.19 Approximately 100 g of the 
combined sample was collected in a sterile tube, 
stored at 4°C and transported to the laboratory. 

Isolation and maintenance of soil bacteria
 To isolate soil bacteria, 1 g of each soil 
sample was dissolved in diluent (sterile normal 
saline solution), vortex homogenously and the 
volume was adjusted to 10 mL. Sample was mix 
thoroughly before performing serially dilution.  
The suspension was then serially diluted and 100 

µL of the suspension at dilutions of 10-2 and 10-3 
were spread on nutrient agar (Himedia) plates. 
The plates were incubated for up to 3 days at 
37°C, according to previous study with some 
modifications.20-21 To acquire the pure isolate, the 
single colonies were picked up and sub-cultured 
on new nutrient agar plates. The pure isolate of 
bacteria was stored in 25% glycerol at -80°C for 
further studies.

Antimicrobial susceptibility testing
 Pure isolates were tested for antibiotic 
susceptibility according to the Clinical and 
Laboratory Standards Institute (CLSI) standard by 
the disc diffusion method.20 Before preparing the 
bacterial suspension, the isolates were cultured 
in Mueller–Hinton broth (Himedia) overnight at 
37°C with shaking at 150 rpm. The turbidity of 
the suspension was adjusted to McFarland 0.5 
using Mueller–Hinton broth. After gently mixing 
the suspension, a sterile cotton swab was dipped 
into the suspension and any excess was removed 
by gently rotating the swab against the surface of 

Figure 1. Study sites in the Fa-La-Mee mountain range, Sa Bot district, Lopburi province, Thailand. Livestock-exposed 
and -unexposed soil samples were collected at five sampling sites (1-5). The maps were obtained from Open Street 
Map (ODC Open Database License)
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the tube. The swab was then used to distribute 
the bacteria over surface of Mueller–Hinton 
agar (Himedia). The plates were left to stand at 
room temperature for 5 min and then antibiotic 

discs were placed on the designated area of the 
Mueller–Hinton agar. The antibiotics used in 
this study were ampicillin (10 µg), gentamicin 
(10 µg), cefepime (30 µg), ciprofloxacin (5 

Table 1. Description of the study sites in the Fa-La-Mee mountain range

Area Coordinates           Area description

  Livestock-exposed area Unexposed area

1 15.289291,  Plain, open grassland Slope covered by dry dipterocarp forest
 100.876245 Livestock: mixed-breed cattle 
2 15.290831,  Plain, open grassland Slope covered by dry dipterocarp forest
 100.876875  Livestock: Siamese buffalos 
3 15.292203,  Plain, grassland  Steep slope
 100.877317  Livestock: mixed-breed cattle 
4 15.293443,  Plain, grassland Steep slope
 100.879061  Livestock: mixed-breed cattle 
5 15.292420,  Plain, open grassland Slope covered by dry dipterocarp forest
 100.881079  Livestock: mixed-breed cattle 

Figure 2. Examples of the geology of the study site and soil texture. (a) The geology of the study site 4 showing a 
livestock-exposed area (grassland) and unexposed area (steep slope). Textures of the soil samples collected from 
livestock exposed (b) and unexposed (c) areas at study site 4
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µg), trimethoprim/sulfamethoxazole (25 µg), 
tetracycline (30 µg), chloramphenicol (30 µg). 
All antibiotic discs were purchased from Oxoid 

Ltd. (Thermo Fisher Scientific). After incubation 
overnight at 37°C, the inhibition zones around 
the discs were measured and the isolates were 

Figure 3. Diameter of the antibiotic inhibition zone. The diameter of the inhibition zone is shown in millimeters. 
Abbreviations: AMP, ampicillin; C, chloramphenicol; TE, tetracycline; CN, gentamicin; CIF, ciprofloxacin; SXT, 
trimethoprim/sulfamethoxazole; and FEP, cefepime
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classified as sensitive or resistant according to the 
standardized table supplied by the CLSI.

Molecular identification of bacteria by 16S rRNA 
gene sequencing
 T h e  u n i ve rs a l  p r i m e rs  2 7 F  ( 5 - 
AGAGTTTGATC(A/C)TGGCTCAG-3) and 1492R 

(5- TACGG(C/T)TACCTTGTTACGACTT-3) were 
used for amplification of the 16S rRNA gene 
fragment.21 DreamTaq PCR Master Mix (Thermo 
Fisher Scientific) was used for 16S rRNA gene 
amplification. The final concentration of each 
forward and reverse primer was 0.4 µmol. For 
DNA template, a single colony was picked up and 

Table 2. Number of isolate and percentage of antibiotic resistant bacteria isolated from perlite-rich soil in livestock-
exposed and unexposed areas

Area     Number of resistant isolate (percent)

 AMP C TE CN CIP SXT FEP

Exposed area 8 (23.5) 1 (2.9) 0 (0) 1 (2.9) 0 (0) 1 (2.9) 9 (26.5)
Unexposed area 5 (22.7) 1 (4.5) 0 (0) 1 (4.5) 0 (0) 1 (4.5) 5 (22.7)

Abbreviations: AMP, ampicillin; C, chloramphenicol; TE, tetracycline; CN, gentamicin; CIP, ciprofloxacin; SXT, trimethoprim/
sulfamethoxazole; and FEP, cefepime

Figure 4. 16S rRNA phylogeny of resistant isolates. The phylogenetic tree was built with full-length 16S rRNA gene 
sequences using the Maximum Likelihood method in MEGA11. Bootstrap values (1000 replicates) are displayed 
for important internal nodes
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dissolved in 50 µL of dH2O, heated at 95°C for 2 
min, and centrifuged at 12,000 g for 1 min. An 
aliquot (2 µL) of the supernatant containing the 
DNA was used as the template. The PCR cycling 
conditions were as follows: an initial denaturation 
for 5 min at 95°C, followed by 35 cycles of 
denaturation at 95°C for 30 s, annealing at 55°C 
for 30 s, extension at 72°C for 1 min, and then a 
final extension for 5 min at 72°C. The amplified 
PCR products were electrophoresed on 1% agarose 
gel. The amplified 16S rRNA gene fragment was 
purified and sequenced using DNA sequencing 
services (ATGC) using the same primer as for PCR 
amplification. The 16S rRNA gene sequences were 
exported into the Basic Local Alignment Search 
Tool (BLASTN) available at the National Center 
for Biotechnology Information (NCBI) website 
to identify matches with existing characterized 
reference sequences. A maximum likelihood 

phylogenetic tree was constructed using MEGA1122 
with the 16S rRNA gene full-length sequences.

Statistic analysis
 Fisher’s exact test was used to determine 
a statistically significant association between 
livestock exposure and AMR percentage in perlite-
rich soil. The test was performed by RStudio.

RESULTS

Characteristics of the study site
 The details for the study sites are given 
in Table 1. The livestock-exposed areas were plain 
areas with open grassland. The unexposed areas 
were steep slope or slope areas covered by dry 
dipterocarp forest. Livestock were not contained 
within set areas. The livestock were mixed-breed 
cattle or Siamese buffalo. The antibiotics use 

Table 3. 16S rRNA gene-based identification of antibiotic resistant bacteria isolated from perlite-rich soil

Area Isolate Resistant Genus/species % identity
  pattern

Exposed 1C-1 AMP/CN Chryseobacterium 99.77
   arthrosphaerae
 1C-3 AMP Enterobacter sp. 99.46
 1C-4 AMP Enterobacter sp. 98.82
 1C-5 C/FEP Bacillus licheniformis 100
 1C-10 FEP Bacillus pumilus 100
 1C-11 AMP/FEP Bacillus paramycoides 100
 2C-2 AMP/FEP Bacillus cereus 99.93
 2C-5 AMP Diaphorobacter sp. 99.85
 2C-7 AMP Stenotrophomonas 99.8
   acidaminiphila
 3C-3 FEP Bacillus sp. 99.43
 5C-3 FEP Bacillus pumilus 100
 5C-4 FEP Bacillus sp. 100
 5C-5 AMP Chryseobacterium sp. 99.85
 5C-6 FEP Bacillus pumilus 100
 5C-8 AMP/FEP Bacillus licheniformis 99.93
Unexposed 1U-2 AMP/SXT/FEP Bacillus cereus 99.93
 2U-2 FEP Bacillus pumilus 100
 2U-7 AMP Klebsiella variicola 100
 3U-1 AMP/C Pseudomonas 100
   nitroreducens
 3U-5 AMP/CN Burkholderia sp. 99.93
 4U-4 FEP Peribacillus simplex 100
 5U-1 AMP/FEP Bacillus cereus 100
 5U-4 FEP Fictibacillus solisalsi 100

Abbreviations: AMP, ampicillin; C, chloramphenicol; TE, tetracycline; CN, gentamicin; CIP, ciprofloxacin; SXT, trimethoprim/
sulfamethoxazole; and FEP, cefepime
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was reported by famers in the area which were 
amoxicillin, kanamycin, gentamicin, streptomycin, 
ceftiofur, and sulfamethoxazole/trimethoprim. 
Antibiotics are typically administered to livestock 
via injection for treatment of infections or wounds. 
The soil samples were sandy with white, light gray, 
or gray in color, which indicated that perlite was 
present in the soil. Examples of the study site 
geology and soil texture are shown in Figure 2.

Isolation of bacteria from the perlite-rich soil
 A total of 56 cultivable bacteria were 
isolated from the perlite-rich soil samples, 
including 34 from livestock-exposed areas and 22 
from unexposed areas. The colonies of isolated 
bacteria exhibited distinct characteristics for 
color, size, pigmentation, and texture. The 
isolates were then subjected to Gram staining and 
observed under a microscope to investigate their 
morphologies. Gram-positive bacteria (76.5%) 
were more abundant than gram-negative bacteria 
(23.5%) in the livestock-exposed area. Similarly, 
most of bacteria in the unexposed area were 
Gram-positive (86.4% compared with 13.64% for 
Gram-negative). Almost all the isolated bacteria 
were rod shaped, but some were filamentous 
(14% in the livestock-exposed areas and 4.3% in 
the unexposed areas). 

Antibiotic sensitivity of cultivable bacteria from 
perlite-rich soil 
 The bacteria isolated from the perlite-
rich soil in both livestock-exposed and unexposed 
areas were subjected to antibiotic susceptibility 
tests. The following seven antibiotics were used 
to test antibiotic sensitivity in accordance with the 
CLSI guidelines; ampicillin, gentamicin, cefepime, 
ciprofloxacin, trimethoprim/sulfamethoxazole, 
tetracycline, and chloramphenicol (Figure 3). 
The antibiotics used in this study were identical 
or relevant to the antibiotics used in livestock 
husbandry in the study area. The CLSI guidelines 
provide criteria for interpreting the clear zone 
diameter for discrimination between sensitive and 
resistant traits. The criteria depend on the bacterial 
species and the types of antibiotics. Because the 
isolated bacteria in this study were quite diverse 
and some genera were not listed in the guidelines, 
we decided to use the minimum zone diameter of 

each antibiotic to distinguish between sensitive 
and resistant traits. Isolates that had a clear 
zone diameter smaller than the minimum zone 
diameter of the tested antibiotic were categorized 
as resistant. Among the 34 bacteria isolated from 
the livestock-exposed area, nine isolates (26.5 %) 
showed resistance to cefepime, and eight isolates 
(23.5%) showed resistance to ampicillin. Three 
bacteria were resistant to one each of antibiotic 
which included chloramphenicol, gentamicin, and 
trimethoprim/sulfamethoxazole. Interestingly, 
bacteria from unexposed areas exhibited a similar 
resistance pattern. The percentage of isolates that 
showed resistance to cefepime and ampicillin 
resistance was 22.7% and three bacteria were 
resistant to one each of antibiotic which included 
chloramphenicol, gentamicin, and trimethoprim/
sulfamethoxazole. All isolates showed high 
susceptibility to tetracycline and ciprofloxacin 
(Table 2). Fisher’s exact test revealed no significant 
association between livestock exposure and the 
percentage of AMR in perlite-rich soil (p = 1).

16S rRNA identification of resistant isolates
 Resistant isolates were identified by 16S 
rRNA gene sequencing. The resistance pattern, 
identification result, and percent similarity 
of each isolate are presented in Table 3. A 
phylogenetic tree was drawn using the full-length 
16S  rRNA gene sequence (Figure 4). Most 
of the culturable bacteria isolated from the 
perlite-rich soil were Bacillus spp. Notably, all 
Bacillaceae (Bacillus, Peribacillus, and Fictibacillus) 
in both areas were resistant to cefepime. For 
the exposed areas, three Bacillus isolates were 
resistant to both ampicillin and cefepime, and 
an isolate of Chryseobacterium arthrosphaerae 
was resistant to both ampicillin and gentamicin. 
Ampicillin-resistant Enterobacter, Diaphorobacter, 
Stenotrophomonas, and Chryseobacterium 
were also found. In the unexposed areas, three 
isolates were resistant to two antibiotics. These 
were Pseudomonas nitroreducens, which showed 
resistant to ampicillin and chloramphenicol, 
Burkholderia sp. (non-pseudomallei), which 
were resistant to ampicillin and gentamicin, and 
Bacillus cereus, which was resistant to ampicillin 
and cefepime. Remarkably, an isolate of B. cereus 
was found to be resistant against three agents 
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(ampicillin, trimethoprim/sulfamethoxazole, and 
cefepime) and was considered multi-drug resistant 
(MDR) (Table 3).

DISCUSSION

 Perlite is a valuable mineral that is used 
in many industries because of its properties.4 In 
Thailand, a perlite mine was historically operated 
in the Fa-La-Mee mountain range. After the end 
of the mining concession, parts of the mining 
area were gradually covered by grassland. In the 
past few years, people from nearby areas have 
used the grasslands for livestock grazing. The 
soil in these areas has a high perlite content, and 
this creates a unique environment that is not 
present in other parts of Thailand. In the current 
study, cultivable bacteria from perlite-rich soil 
in livestock-accessible and livestock-inaccessible 
areas were isolated and tested for antibiotic 
resistance. Most of the cultivable bacteria in the 
perlite-rich soil samples from both the livestock-
exposed and unexposed areas were Gram-positive 
bacilli. The 16S rRNA gene sequences analysis 
revealed that most of the bacteria were Bacillus 
spp. Interestingly, an antibiotic susceptibility 
test revealed that AMR bacteria in perlite-rich 
soil appeared to be livestock independent 
because the resistant patterns were not different 
between livestock-exposed and unexposed areas. 
Many studies have suggested that soil bacteria 
spontaneously carry different types of antibiotic 
resistant genes that allow for survival against 
natural antibiotics present in the environment.23,24 
For example, bacteria in remote untouched 
Antarctic soils spontaneously carry antibiotic 
resistant genes without antibiotic exposure.25 
Almost all the ampicillin-resistant bacteria 
found in this study were previously reported to 
possess intrinsic ampicillin resistance.26-31 Several 
studies have showed that antibiotic-resistant 
bacteria are common in soil contaminated with 
livestock waste, particularly antibiotic-resistant 
Enterobacteriaceae. However, these studies lacked 
a non-contaminated control group.13-15 In this 
study, only few resistant Enterobacteriaceae were 
found (two isolates in the exposed areas and one 
isolate in the unexposed areas). A previous study 
demonstrated that the survival of Escherichia 
coli, a member of the Enterobacteriaceae family, 

varied with the soil type and that survivability 
of E. coli was minimal in sandy soil.32 Thus, the 
survival of Enterobacteriaceae in perlite-rich soil 
may be limited because of the physicochemical 
properties of the soil. Additionally, a study 
on the microbiome composition of soils from 
sandy-gravel mining complexes revealed that 
actinobacteria was the most abundant phyla 
across all samples.33 Members of actinobacteria 
such as Streptomyces are well recognized for 
their ability to synthesize many antibiotics 
that can alter soil bacterial communities.34,35 
Previous studies that indicated perlite as a 
favorable environment for Enterobacteriaceae 
growth utilized heat-treated perlite as a planting 
medium, which seemingly eliminated the original 
microbial community. In contrast, our study 
employed unprocessed perlite directly from its 
natural environment, which contained complex 
microbial composition. This highlights the native 
microbial community’s potential role in controlling 
AMR Enterobacteriaceae within perlite-rich 
soils.16,17 Overall, our results indicated that AMR 
in perlite-rich soil is likely driven by intrinsic 
resistance, physicochemical properties, and/or 
the microbial community of the soil rather than 
antibiotic use in livestock farming. Investigation 
of the physicochemical properties and microbial 
communities of perlite-rich soil could offer deeper 
insights into spread of AMR within this unique 
environment.
 Our results highlighted the resistant 
nature of Bacillus spp. against cefepime. Cefepime 
is a fourth-generation cephalosporin with broad 
activity against several Gram-positive and Gram-
negative bacteria. Cefepime is normally used for 
treating nosocomial pneumonia, urinary tract 
infections, skin and skin structure infections, and 
intra-abdominal infections.36 A study on AMR 
profile of thermophilic Bacillus licheniformis 
isolated from soil in Iraq showed 100% resistant 
to cefepime.37 Bacillus cereus isolated from dairy 
products in China also exhibited a high level of 
resistance to cefepime (96.30%).38 Additionally, 
approximately 20 % of Bacillus species found 
in powdered infant milk in Saudi Arabia were 
cefepime resistant.39 Furthermore, many Bacillus 
species displayed a high level of resistance to 
other cephalosporins, including ceftazidime, 
cephalothin, and cefotaxime.40,41 In the present 
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study, other members of the Bacillaceae family 
(Peribacillus simplex and Fictibacillus solisalsi) 
were also resistant to cefepime. Interestingly, a 
MDR B. cereus that was resistant to cefepime, 
ampicillin, and trimethoprim/sulfamethoxazole 
was isolated from the unexposed area. Resistance 
of B. cereus against different classes of antibiotics, 
including b-lactam antibiotics, cephalosporins, 
sulfonamides, and macrolides, has been reported 
worldwide.42-44 Bacillus spp. harbored several 
antibiotic resistant genes which involved several 
mechanisms included inactivation of antimicrobial 
agents, efflux pump, drug target modification such 
as enzymatic modifications by aminoglycoside 
5-phosphotransferase (aph-5) and methylation in 
23S rRNA.45-47 In addition, the antibiotic-resistant 
gene in manured soil is interconnected with 
the bacterial community in plants which is the 
potential risks of plant resistome migration to 
the food chain.48 Although it is well-known that 
B. cereus causes food poisoning by producing 
enterotoxins, there are increasing reports of 
it causing serious non-gastrointestinal tract 
infections, such as cutaneous and blood stream 
infections.49-51 Although B. cereus infection is 
rare, the spread of MDR B. cereus spread in the 
environment should be monitored because it may 
pose a health risk. 

CONCLUSION

 Most of culturable antibiotic resistant 
bacteria isolated from perlite-rich soil in this 
study were cefepime-resistant Bacillaceae. 
Antibiotic resistant patterns in livestock-exposed 
and unexposed areas are not different. These 
results indicated that antibiotic resistance in 
perlite-rich soil was likely not driven by antibiotic 
use in livestock farming but potentially by the 
physicochemical properties and/or microbial 
community of perlite-rich soil. Future study should 
include physicochemical analyses, microbial 
community profiling together with full antibiotic 
resistance profiling of both culturable and 
non-culturable bacteria to provide complete 
information about AMR, which will be useful for 
developing AMR prevention and control strategies 
in the future.
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