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Abstract
Mangroves are one of the world’s most unique tropical coastal ecosystems. They are a rich repository 
of biological wealth, including specially adapted flora and fauna. The microbiome component of this 
ecosystem is a fascinating world that is yet to be fully explored for its functional and ecological inter-
relationships with its hosts. The mangrove ecosystem is a hidden treasure of microbial diversity, without 
which mangrove biology is incomplete. In the present study, the isolation of a cellulase-producing, 
endophytic Bacillus sp. from the hypocotyl region of viviparous seedlings is described. This study urges 
us to look into the microbial diversity of mangrove propagules, by presenting a glimpse of a member 
of the endospheric microbiome of viviparous hypocotyls.
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INTRODUCTION

 Mangroves are a unique, tropical coastal 
ecosystem, mostly comprising salt-tolerant 
tree species.1-3 These plant species have unique 
morphological and physiological adaptations, 
which enable them to encounter harsh conditions 
of high salinity and pH range of 4-10.4-6 Mangrove 
biology has always remained an intriguing subject 
and currently, there is a resurgence in its studies. 
7-14 Microbiome component, especially endophytes 
of ‘mangrove holobiont’,15,16 is one such area that 
needs further investigations to unveil the functional 
relationship between endophytes and their host.17-

22 The term ‘holobiont’ is comprehended as a 
‘single dynamic entity’, formed by the functional 
interaction between the macroorganism host 
and its associated microbes.23-26 In the case 
of mangroves, the interactions between the 
microbes and its mangrove host, forming a 
single dynamic entity can be apprehended as 
‘mangrove holobiont’. Endophytes like Bacillus 
amyloliquefaciens, Bacillus subtilis, Gordonea 
terrae, Trichoderma harzianum, Piriformospora 
indica etc are non-pathogenic intra or intercellular, 
microbial residents of host plants.27-31 They are 
found to be ubiquitous, sharing an ecological niche 
similar to that of plant pathogens, and often, they 
enter into a mutualistic relationship with host 
plants, contributing to the overall host fitness.32-37

 Rhizophora mucronata  Lam. is  a 
mangrove tree species, belonging to the family 
Rhizophoraceae. Members of this family, commonly 
called ‘red mangroves’, are one of the prominent 
mangrove taxa possessing several adaptive 
features common to mangroves including the 
viviparous type of seed germination.38-41 Vivipary 
is an important developmental phenomenon seen 
associated with the mangrove tree species.39,40 
Here, the seeds germinate while still attached to 
the mother plant and later, seedlings detach and 
drop into the muddy environment where it grows 
further into an adult plant, overcoming extreme 
pH and salinity.40, 42 Exploration of the microbiome 
of these seedlings will help us to identify and 
understand the role of microorganisms in the 
establishment and growth of mangroves, and 
further, it will shed light on mangrove biology 
and its survival. In the present study, attached 
viviparous seedling hypocotyls of Rhizophora 

mucronata are explored for the presence of 
culturable endophytes.

MATERIALS AND METHODS

Study site and collection of plant samples
 Viviparous seedling hypocotyls of  
R. mucronata, in the attached condition, were 
cut from the plant and collected in polyethylene 
bags. They were collected from multiple mangrove 
sites at Koduvally (11°767’N, 75°482’W) and 
Ozhayilbhagam, Dharmadam (11°46’30.14" N 
75°28’25.5" E) located near Thalassery, Kannur, 
Kerala, India. 

Isolation of pure culture
 The samples were cleaned thoroughly 
using 5% teepol solution, followed by surface 
sterilisation using 70% ethanol for 1 min and 
treatment with 5% sodium hypochlorite for 3 
min.43,44 After surface sterilisation, the samples 
were washed three times using sterile distilled 
water and air-dried. Afterwards, the seedlings 
were cut into small pieces of 1-2 cm in length. 
The samples were split open longitudinally and 
the outer green-coloured epidermal portion was 
removed. Inner ‘core’ parts were placed on Luria-
Bertani agar medium (Titan Biotech, Kerala, India) 
and incubated for 1 to 2 days at room temperature 
along with a control plate with sterile water.

Biochemical characterisation of endophytes
 The following tests were carried out to 
characterise the biochemical properties of the 
bacterial isolates.
a) Test for Indole acetic acid (IAA) production
 The bacterial isolates were cultured in Luria-

Bertani broth containing L-tryptophan (1 µg/
ml) for 24 h.45,46 Culture supernatant was 
collected by centrifugation (8000 rpm; 10 
min) and 1 ml of it was taken and mixed with 
freshly prepared Salkowsky reagent (2 ml). 
The reaction mixture was incubated at 28°C 
for 25-30 min., and colour change noticed.

b) Cellulase activity
 Fresh cultures of the bacterial isolates were 

spot inoculated on nutrient agar containing 
carboxy methyl cellulose (0.2%) and incubated 
at 30°C for 3-4 days.47 After the incubation, the 
culture plates were flooded with Congo-red 
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stain solution (1 µg/ml) for 10-15 min., and 
washed with NaCl (1 M).

c) Starch hydrolysis
 Nutrient agar medium containing soluble 

starch (0.3%) was inoculated with freshly 
grown bacterial cultures and incubated for 2-3 
days at 30°C. The culture plates were stained 
with Gram’s iodine by flooding.44

d)  Production of ammonia
 For the detection of ammonia production, the 

bacterial cultures were grown in nutrient broth 
(30°C for 24-48 h) in a rotary shaker (Remi 
Instruments, India). After the incubation, 
Nessler’s reagent (0.5 ml) was added to each 
tube and colour development is noticed.46

e)  Catalase activity
 Fresh bacterial cultures were used to inoculate 

Yeast extract tryptone broth tubes and 
incubated for 3 days at 30°C. For testing 
catalase activity a few drops of 3% H2O2 were 
added to both cultures.48

f)  Gelatin hydrolysis
 Freshly grown bacteria was inoculated on 

nutrient gelatin medium and incubated for 3 
days at 30°C along with control tubes. These 
tubes were then placed in ice to test the 
gelatinase activity.49,50

g) Phosphate solubilisation
 To detect phosphate solubilisation activity, 

freshly grown bacterial cultures were spot 
inoculated on Pikovskaya agar medium, and 
incubated at 30°C for 1-8 days.51

Molecular analysis of 16S rRNA region of bacterial 
isolates
a) Amplification of 16S rRNA 
 F o r w a r d  p r i m e r  5 ’ - C C G A AT T C G 

TCGACAACAGAGTTTGACCCTGGTTCAG-3'; and 
Reverse primer 5’-CCCGGGATCCAAGCTTAC 
GGCTACCTTGTTACGACTT-3’ was used to 
amplify the 16S rRNA gene from the microbe 
under the following PCR conditions: 98°C - 2 
min; 30 cycles of 98°C - 30 sec; 55°C - 30 sec; 
72°C - 1 min and Final extension, 72°C - 10 
min.

 The amplified products were analysed on 0.8% 
EtBr-Agarose gel.

b) Sequencing of PCR product
 The PCR product were purified and subjected 

to direct sequencing in an automated 

sequencing machine (ABI prism, Applied 
biosystems, CA,USA). Forward primer given 
above was used for the sequencing purpose. 

c) BLAST analysis of sequences
 Good quality sequences were subjected to 

BLAST analysis (https://blast.ncbi.nlm.nih.
gov). The sequences were searched against 
nucleotide database of NCBI to identify the 
bacterial strain.

d) Phylogenetic analysis
 Phylogenetic analysis of the current bacterial 

isolate were carried out based on the 16SrRNA 
sequences using the software MEGA version 
11.52 Neighbour- Joining Method was used to 
generate the phylogenetic tree (cladogram).

RESULTS

Isolation and characterization of endophytes 
from plant tissues
 Out of the several bacterial colonies 
obtained, the bacterial colony which is found fast 
growing and emerging directly out of the tissues 
was selected and named as VpR. It was found to 
have rod-shaped morphology when observed 
under a microscope. The culture was positive for 
Gram’s stain reaction and also for biochemical tests 
like cellulase, catalase and ammonia production. 
The culture did not show any prominent hydrolytic 
activity for starch or gelatin. Tests for IAA 
production and Phosphate solubilisation were 
also negative. A summary of morphological and 
biochemical characterization is shown in Table. 
Figure 1 shows the results of the biochemical test 
for cellulase activity.

16S rRNA amplicon sequence analysis of bacterial 
isolates
 Molecular analysis of bacterial isolates 
was carried out based on the 16S rRNA region. 
16S rRNA region of the bacterial culture samples 
was amplified and separated on 0.8% EtBr-Agarose 
gel. Sequencing of the purified PCR products was 
carried out in ABI prism automated sequencer. The 
16S rRNA sequence showed maximum homology 
to that of Bacillus subtilis. The sequence obtained 
was deposited in GenBank: MT968034 (VpR). 
Result of the phylogenetic analysis is shown 
as a bootstrap consensus tree in Figure 2. The 
evolutionary relatedness of the present bacterial 
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isolate with other bacterial groups can be inferred 
from this cladogram.

DISCUSSION

 The microbiome of mangroves is an 
underexplored ecological as well as functional 
component of ‘mangrove holobiont’.15 Several 
studies have highlighted the importance of 
microbial associates of mangrove plants which 
includes both plant protection and plant growth 
promotion.53,54 Isolation of salt-tolerant microbes 
from the mangroves is an example to apprehend 
the role microbes in mangrove ecosystem which 
is a unique ecosystem characterized by salinity.8 
They can facilitate the uptake of nutrients like 
Phosphorus, Nitrogen, etc. which is very much 
crucial for the plant growth. Many of the resident 
microbes are capable of producing growth 

promoting phytohormones like IAA (indole acetic 
acid) besides the production of hydrolytic enzymes 
like cellulases. They can also ‘prime’ the plant 
defense mechanism.55 Many bioactive compounds 
are isolated from mangrove endophytes which 
could also find applications in agriculture as well 
as in medical fields besides their role in mangrove 
ecosystem.8,54 In general, they are partners in 
mangrove biology rendering many ecosystem 
services including nutrient cycling.13,56-60

 In the present study, isolation and 
identification of Bacillus subtilis from the 
core tissues of viviparous seedling hypocotyls 
of Rhizophora mucronata is described. The 
occurrence of Bacillus subtilis in the endosphere 
of the undetached viviparous seedling hypocotyl 
of R. mucronata points to the various possibilities 
that this endophyte could have in the lifecycle of 
its host. This particular bacterial culture showed 
cellulase, catalase and ammonia-producing 
activities. Ammonia production by endophytic 
bacteria is a feature that is generally considered 
to be plant growth promotion in nature,61 but, 
contrary views and opinions are also presented by 
researchers.62,63 From an ecological point of view, 
the feature of ammonia production by bacteria 
and its relevance to mangrove biology will be an 
interesting study to follow. Microbial cellulase 
activity is considered to contribute significantly 
to the carbon cycle at the ecosystem level.64,65 

Catalase activity is generally considered as a 
cellular mechanism to mitigate abiotic stress, but 
the endophytic catalase activity observed here 
could be an attribute of the microbe to adapt itself 
to the endophytic lifestyle.66

Table. Results of morphological and biochemical 
characterization of bacterial endophytes isolated 
from Rizhophora mucronata. VpR- Viviparous seedling 
hypocotyl inner core tissue

No. Reaction VpR

1. Gram staining +
2. Cell morphology Rod
3. Cellulase activity +
4. Starch hydrolysis -
5. Catalase activity +
6. Gelatine hydrolysis -
7. Test for IAA production -
8. Production of ammonia +
9. Phosphate solubilisation -

Figure 1. Cellulase activity by endophytic isolates from Rhizophora mucronata Lam. 
a) Control plate (E. coli), b) VpR. The ‘clear zone’ seen around the colony is due to the cellulolytic activity of bacteria
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 In most cases, endophytes are known to 
impart plant-beneficial attributes. They are found 
to reduce the severity of stress encountered by 
the host plant.30-32, 61,67,68 Bacillus subtilis and other 
members of the group Bacillus, occur in diverse 
habitats including endophytic conditions where 
they contribute to the benefit of host plants, 
especially in adaptive features like salinity and 
drought resistance.69-71 Endophyte-mediated plant 
resistance has emerged as a successful alternative 
agriculture strategy in many instances. Various 
species of Bacillus, (Bacillus cereus, Bacillus 
subtilis, Bacillus amyloliquefaciens, Bacillus 
tequilensis, etc.), in several cases, have been 

shown to be successful as biocontrol agents in 
crops.29,36,37,54,68,70, 72-74

 The term ‘holobiont’ is conceptualized as 
‘a single dynamic entity’ formed of the functionally 
related partners – the macroorganism host 
and its associated or interacting microbes.23-26 
Endophytes of these salt-tolerant trees are 
important partners of the ‘holobiont’ without 
which the mangrove biology will be incomplete. 
Besides, the microbiome component of the 
mangrove ecosystem is a promising resource for 
novel microbes with hitherto unknown attributes 
or features with biotechnological and agricultural 
application potential.7, 75-79

Figure 2. Phylogenetic analysis of Bacterial isolate VpR – Bacillus subtilis (MT968034.1). 
Bootstrap consensus phylogenetic tree is shown here. The sequences were aligned and analysed using MEGA 
Software (version 5.0.5). The branching pattern of the tree is derived by Neighbour-Joining method
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