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Abstract
Antarctica is renowned as the most inhospitable environment where microorganisms are thriving in 
the frontiers of life. In the past few years, many novel bacterial species have been reported from the 
Antarctic environment. During taxonomic re-evaluation of novel bacterial species from Antarctica, it 
was noticed that Kocuria polaris shared high 16S rRNA gene sequence similarity with Kocuria rosea. 
In the present study, the taxonomic position, metabolic potentials, and stress survival strategy of  
K. polaris were evaluated through genome analysis. K. polaris encodes genes for glycolysis, citrate cycle, 
pentose phosphate pathway, dissimilatory nitrate reduction, assimilatory sulfate reduction, etc. In 
addition, K. polaris also encodes genes for cold and salt stress. The 16S rRNA gene sequence extracted 
from K. polaris and K. rosea genomes showed 99.7% similarity. In the phylogenomic tree, K. polaris 
and K. rosea clustered together. The average nucleotide identity and digital DNA–DNA hybridization 
values between K. polaris and K. rosea exceeded the threshold (95-96% for ANI and 70% for dDDH) 
value for distinguishing species, showing that they are similar species. The present study shed light 
on K. polaris survival strategy in extreme conditions. We further propose to reclassify Kocuria polaris 
as a later heterotypic synonym of Kocuria rosea.
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INTRODUCTION

 Antarctica is renowned as one of the 
planet’s most inhospitable environments, defined 
by its extreme cold, arid conditions, relentless 
winds, intense UV radiation, and extremes 
of light and darkness.1 Despite being on the 
frontiers of life´s limits, the frozen realm likely 
harbors an extensive and undiscovered array of 
microorganisms.2 The distinctive and inhospitable 
environment leads to the preferential selection 
of microbial species exhibiting atypical metabolic 
capabilities and/or the synthesis of uncommon 
metabolites and substances.3,4 In the past few 
years, many novel microbial species from the 
Antarctic environment have been reported.5-7 In 
this regard, a Gram-positive, orange-pigmented 
novel psychrophilic bacterium Kocuria polaris 
(K. polaris) was reported from an Antarctic 
cyanobacterial mat.8 During the taxonomic 
assessment of Antarctic bacteria, an intriguing 
observation emerged, K. polaris exhibited a high 
degree of 16S rRNA gene sequence similarity to 
Kocuria rosea (K. rosea). As a result, this study 
aims to provide a comprehensive clarification of 
the taxonomic classification of K. polaris employing 
genome analysis. Further, its metabolic potential 
and survival strategy in the cold environment were 
evaluated through genome analysis.

MATERIALS AND METHODS

Genome attributes
 To evaluate the taxonomic position of K. 
polaris, all the type species genomes of the genus 
Kocuria were downloaded from NCBI (https://
www.ncbi.nlm.nih.gov/). Nesterenkonia flava 
CCTCC AB 207010T (GCF_031432335.1) genome 
was also downloaded to use as an outgroup for the 
construction of a phylogenomic tree. The quality of 
the genomes was evaluated using CheckM.9 Since 
K. polaris exhibited a high degree of 16S rRNA gene 
sequence similarity to K. rosea their genomes 
were visualized and compared using Proksee.10,11 
The tRNAs were predicted using tRNAscan-SE.12 
Average nucleotide identity (ANI) and digital DNA–
DNA hybridization (dDDH) values were determined 
to evaluate the genomic relatedness between K. 
polaris and K. rosea. Pyani with ANIm parameter.13 
and the Genome-to-Genome Distance Calculator 

(http://ggdc.dsmz.de/ggdc.php version 3.0; local 
alignment tool BLAST+ using formula 2).14,15 
were used to estimate the ANI and dDDH values, 
respectively. 

Phylogenomic tree construction
 Phylogenomic tree was constructed 
using the Anvi’o tool (version 7.1).16,17 The process 
of converting FASTA files into contigs-db and 
identifying open reading frames and matching 
genes in the contigs to single-copy core genes was 
carried out using the program anvi-gen-contigs-
database and anvi-run-hmms.18,19 The genes 
present in HMM source ‘Bacteria 71’ 20 were taken 
and aligned using MUSCLE.21 The generated tree 
was displayed using MEGA version 7.0.22

16S rRNA gene comparison and functional 
annotation
 To compare K. polaris and K. rosea the 
16S rRNA gene from the genomes was extracted 
using the script “anvi-get-sequences-for-hmm-
hits” (hmm-source Ribosomal RNA 16S) (https://
github.com/tseemann/barrnap). The EzBioCloud 
server’s pairwise alignment function was used 
to assess the 16S rRNA gene (extracted from 
the genome) sequence similarity between K. 
polaris CMS 76orT and K. rosea ATCC 186T (www.
ezbiocloud.net/tools/pairAlign). To evaluate K. 
polaris metabolic potentials and survival strategy 
in the cold environment functional annotation was 
performed by KofamKOALA23 using the anvi-run-
kegg-kofams program.

RESULTS AND DISCUSSION

 The genus Kocuria was proposed by 
Stackebrandt et al.24 and at the time of writing 
the genus includes 26 validly published species 
names.25 Among Kocuria species, K. polaris was 
isolated from the Antarctic cyanobacterial mat, 
and as mentioned above it was reported to share 
high 16S rRNA gene sequence similarity with the 
type strain of K. rosea,8 hence the present study 
evaluates its taxonomic position. We further 
evaluated the metabolic potentials and survival 
strategy of K. polaris in a cold environment.
 The genome size of K. polaris CMS 
76orT was 3779800 (bp) with 72.8% G+C content 
while the genome size of K. rosea ATCC 186T 
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was 3946651 (bp) with 72.7% G+C content. The 
genome completeness of K. polaris CMS 76orT 
and K. rosea ATCC 186T was 99.1 and 98.6%, 
respectively with zero contamination. A total 
of 48 tRNAs were predicted in both K. polaris 
CMS 76orT and K. rosea ATCC 186T. The graphical 
representation of the genome’s comparison is 
mentioned in Figure 1.

Metabolic potential and survival strategy of K. 
polaris 
 K. polaris CMS 76orT encodes genes 
for glycolysis, citrate cycle, and pentose 
phosphate pathway. Nitrate stands as the most 
highly oxidized variant among fixed nitrogen 
compounds, constituting a vital nutrient crucial 
for the sustenance of microbial and plant life.26 
In prokaryotes, dissimilatory nitrate reduction 
mechanisms have been extensively explored.26-28 
Reduction of nitrate to nitrite by respiratory 
membrane-bound NarG or periplasmic nitrate 
reductase NapA is the first step in dissimilatory 
nitrate reduction. Nitrite is next reduced to 
ammonia by cytoplasmic nitrite reductase NirB or 

periplasmic nitrite reductase NrfA.27 In the present 
study, the genes encoding dissimilatory nitrate 
reduction (NarGHI and NirBD) were noticed in K. 
polaris CMS 76orT. In addition, genes related to 
nitrate assimilation were also noticed in K. polaris 
CMS 76orT.
 Microorganisms use assimilatory sulfate 
reduction to convert inorganic sulfate to sulfide.29 
In the present study, it was noticed that K. polaris 
CMS 76orT encodes genes (CysND, CysH and 
Sir) for assimilatory sulfate reduction. K. polaris 
CMS 76orT encodes genes for various amino acid 
metabolism (like betaine, methionine, lysine, 
ornithine, arginine biosynthesis, etc). A detailed 
list of metabolic potentials of K. polaris CMS 76orT 
is mentioned in Table S1.
 Low temperatures significantly limit 
cellular function by impacting cell structure, 
water thickness, solute movement, membrane 
flexibility, enzyme activity, and large molecule 
interactions.30 Microorganisms that survive in 
cold environments rely on adaptive strategies 
to keep their fundamental cellular processes 
intact.30 In reaction to a quick temperature 

Figure 1. Genome graphical representation of Kocuria polaris CMS 76orT and Kocuria rosea ATCC 186T
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drop, many bacteria produce small cold shock 
proteins.31 The cold-shock protein, CspA, was 
found to be significantly upregulated during 
the cold-shock response.32 In the present study, 
CspA was also noticed in K. polaris CMS 76orT. 
Universal stress proteins (USP) are key regulatory 
stress proteins that help bacteria survive in 
stressful environments.33 In the present study, 
USP (ABCDEFG) was noticed in K. polaris CMS 
76orT. Trehalose production was reported to play 
a significant role in resistance to freezing in cold 
environments.34 In the present study, The genes 
encoding trehalose biosynthesis were noticed in 
K. polaris CMS 76orT. 
 A sudden drop in temperature can cause 
phase separation of cell membrane phospholipids, 
resulting in decreased membrane fluidity and 
increased permeability.35 Palmitoleate has been 

shown to increase the flexibility of cell membranes 
while decreasing the temperature at which 
phase transition occurs. This helps to mitigate 
the adverse effects of cold temperatures. When 
the temperature drops, in certain bacteria, the 
cold-induced acyltransferase LpxP induces the 
attachment of palmitoleate to lipid A.36 The 
adaptation of membrane fluidity also involves 
the fast desaturation of fatty acids in pre-existing 
phospholipids. This is accomplished by the 
activation of fatty acid desaturase (Des), which 
is regulated by the sensor kinase DesK and the 
response regulator DesR.37 Genome analysis of K. 
polaris CMS 76orT revealed the presence of LpxP, 
DesK and DesR.
 K. polaris CMS 76orT was also reported 
to tolerate NaCl up to 2.9%.8 Salt-in and salt-
out mechanisms help microorganisms regulate 

Figure 2. Phylogenomic tree (based on 71 bacterial single-copy genes) showing the relationships of Kocuria polaris. 
Bootstrap values greater than 50% are shown at branch points. Bar, 0.05 substitutions per nucleotide position
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osmoregulation.38,39 Microorganisms employ the 
salt-in strategy to maintain osmotic equilibrium 
through the accumulation of large amounts of 
inorganic salts or ions within their cytosol.38,39 
The salt-out strategy entails the removal of salt 
ions from the cytoplasm while concurrently 
accumulating large amounts of compatible 
solutes.38-40 Genome analysis of K. polaris CMS 
76orT revealed the presence of genes related 
to potassium uptake protein (Trk system), and 
multicomponent Na+:H+ antiporter. In addition, it 
was also noticed that K. polaris CMS 76orT encodes 
genes for compatible solutes like betaine, proline, 
and trehalose.

Taxonomic position re-evaluation
 In the present study, the 16S rRNA gene 
sequence extracted from K. polaris CMS 76orT 

and K. rosea ATCC 186T genome showed 99.7% 
similarity to each other. Even in the original article 
K. polaris CMS 76orT was reported to share 99.8 
and 71% 16S rRNA gene sequence and DNA–DNA 
hybridization (DDH) similarity with K. rosea ATCC 
186T, respectively.8 The 16S rRNA gene sequence 
similarity was above the threshold value (98.7%), 
while the DDH value was close to the threshold 
value (70%) for species delineation.41 In the 
phylogenomic tree (Figure 2), K. polaris CMS 76orT 

and K. rosea ATCC 186T clustered together. 
 The proposed cut-off values for ANI and 
dDDH values for species delineation were 95-96% 
and 70%, respectively.14,42,43 The ANI value and 
dDDH value between K. polaris CMS 76orT and K. 
rosea ATCC 186T were 98.7 and 87.6%, respectively 
which were above the cut-off value indicating they 
are the same species. Based on the above results 
we propose to reclassify Kocuria polaris as a later 
heterotypic synonym of Kocuria rosea.

CONCLUSION

 In the present study, the survival strategy 
under cold stress, metabolic potential, and 
taxonomic position of K. polaris was evaluated 
through genome analysis. K. polaris encodes 
genes for glycolysis, citrate cycle, pentose 
phosphate pathway, dissimilatory nitrate 
reduction, assimilatory sulfate reduction, etc. To 
overcome cold stress, K. polaris encodes genes 
for cold shock proteins, universal stress proteins, 

and mechanisms to enhance membrane fluidity. 
In addition, it also encodes genes related to 
potassium uptake protein, multicomponent Na+:H+ 
antiporter, and genes related to the synthesis 
of compatible solutes like betaine, proline, and 
trehalose involved in overcoming salt stress. The 
ANI, dDDH, and phylogenomic analysis suggest 
that K. polaris and K. rosea are similar species. 
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