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Abstract
The use of antibiotics against a range of pathogenic bacteria has increased in recent years, leading to 
the development of drug resistance, which makes disease control challenging. Thus, the need for the 
development of new antibacterial medications is critical. Natural resources, such as entomopathogenic 
bacteria (EPB), provide a rich source of metabolites with well-known antibacterial properties. The 
present study aimed to investigate the antibacterial activity of symbiotic (n = 1) and non-symbiotic 
(n = 8) entomopathogenic bacterial species associated with the entomopathogenic nematode (EPN) 
Steinernema feltiae against four multidrug-resistant bacterial species. Bacterial cells and filtrates from 
Xenorhabdus bovienii strongly inhibited the growth of Staphylococcus aureus (33.3 and 28.9 mm) and 
Escherichia coli (24.6 and 21.6 mm) in disk diffusion, minimum inhibitory concentration (MIC) (2 and 
8 µl/ml) and minimal bactericidal concentration (MBC) (4 and 12.5 µl/ml) assays. In conclusion, the 
direct application of endogenous S. feltiae-associated EPB, especially X. bovienii, appears promising 
as an antibacterial agent against multidrug-resistant bacteria (MRBs).
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INTRODUCTION

 Antibiotic multidrug resistance has 
adverse implications for public health worldwide. 
In terms of public health, Staphylococcus aureus, 
Escherichia coli, Enterococcus faecalis, Bacillus 
cereus, Acinetobacter baumannii, Klebsiella 
pneumoniae and Pseudomonas aeruginosa 
are important multidrug-resistant bacteria.1 
Antibiotics are commonly used due to their 
effectiveness against a wide range of pathogenic 
bacteria. However, such use has led to an increase 
in antibiotic drug resistance, which raises the 
risk of a lack of effective antibiotics in the future, 
with implications for public health.2-4 Multidrug-
resistant bacterial infections, although difficult 
to measure accurately, are expected to result 
in nearly 10 million deaths annually by 2050.5 
Therefore, treatments other than antibiotics are 
required to target bacteria that are resistant to 
multiple drugs. 
 One treatment strategy is the use of 
biological compounds derived from bacterial or 
natural sources. These compounds (secondary 
metabolites or natural products) are a key starting 
point when developing new pharmaceuticals. 
Novel compounds with unique structures, high 
activity, and high selectivity have been discovered 
via screening natural products.6 Fungi,7,8 plants,9 
and bacteria6,10,11 are the three major producers 
of natural products in nature. An alternative that 
seems preferable is using antimicrobial peptide 
(AMP) molecules, which are synthesized by 
soil-dwelling organisms. Many bacterial species 
produce antimicrobial toxins in the form of 
secondary metabolites. In entomopathogenic 
nematode/bacterium symbiotic relationships, 
the prokaryotic symbiont's antimicrobials have 
preserve the monoxenic environment for EPB in 
the intestine of infective dauer EPN juveniles.12 
Xenorhabdus and Photorhabdus, members of 
the Enterobacteriaceae family of gram-negative 
bacteria, which form symbiotic associations with 
infected EPN juveniles of the Steinernema and 
Heterorhabditis genera, respectively, provide 
new bioactive pharmaceuticals for treating 
microorganisms.13 EPNs deliver cooperative 
bacteria into the insect hemolymph when they 
infect a target insect. These bacteria release toxins 
and enzymes, which kill the insect host within 

48 hours.14,15 The nematode-infected carcass 
is kept from opportunistic pathogens, such as 
protozoa, fungi, bacteria, and viruses, by a variety 
of natural compounds produced by Xenorhabdus 
and Photorhabdus bacteria.16-18 These bacteria 
are motile rods, oxidase-negative, non-spore 
forming, chemoorganotrophic heterotrophs, with 
respiratory and fermentative metabolism and 
facultative anaerobes.19

 In the past, the association between 
EPNs and their mutualistic bacteria was thought 
to be monoxenic. However, several recent 
studies have revealed that what exhibited 
decreased virulence when injected into insects.20-22 
Xenorhabdus, the primary symbiont, and a 
dozen other regularly occurring microbiota 
(e.g. Deftia, Stenotrophomonas, Pseudomonas, 
Achromobacter, Alcaligenes, Pseudochrobactrum, 
Brevundimonas, and Ochrobactrum) constituted 
the bacterial group associated with laboratory-
reared dauers from Steinernema carpocapsae, 
Steinernema feltiae, Steinernema glaseri and 
Steinernema weiseri.23 The general hypothesis is 
that non-symbiotic bacteria ‘hitchhike’ in infected 
juvenile vectors at random through the cuticle 
or inter-cuticular region and enter the insect 
haemocoel during infected juvenile penetration.24 
 Xenorhabdus strains are thought to 
have commercial potential in the production of 
novel antibiotics, which could be used to manage 
therapeutically significant pathogens, as well as 
oral insecticidal toxins for use in biocontrol.25 
Previous research demonstrated that bacterial 
antimicrobial resources, including symbiotic 
or non-symbiotic bacterial cells and filtrates, 
successfully prevented the growth of K. pneumonia, 
E. coli, and Enterobacter cloacae,26 Bacillus subtilis 
and Botrytis cinerea,27 Streptococcus pyogenes and 
S. aureus,28,29 Rhizoctonia solani, Phytophthora 
capsici, and Bacillus anthracis30 and Fusicladium 
effusum.31 These bacteria produce numerous 
secondary metabolites with antibiotic activity.29 
These metabolites include chaiyaphumine,32 
1-carbapen- 2-em-3-carboxylic acid,26 3-hydroxy-
2-isopropyl-5-phenethylphenyl carbamate,33 
3,5-dihydroxy-4-isopropystilbene,27 2-isopropyl-
5-(3-phenyl-2-oxiranyl0-benzene-1,3diol,34 and 
benzaldehyde.30 Data on the antibacterial potential 
of EPB linked to EPNs in South western part of 
Saudi Arabia are lacking. Thus, this study aimed 
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to assess the antibacterial effectiveness of EPB 
associated with S. feltiae against four multidrug-
resistant bacterial species (B. cereus, E. cloacae, E. 
coli, and S. aureus) using disk diffusion, minimum 
inhibitory concentration (MIC) and minimal 
bactericidal concentration (MBC) assays.

MATERIALS AND METHODS

S. feltiae-associated bacteria
 EPB associated with the EPN S. feltiae 
were originally isolated and characterized by Prof. 
Dr. Ahmed Noureldeen, Department of Biology, 
Faculty of Sciences, Taif University, Taif, Saudi 
Arabia.35-37 Nine isolates of EPB (Xenorhabdus 
bovienii,  Stenotrophomonas maltophil ia, 
Stenotrophomonas tumulicola, Pseudomonas 
mosselii, Pseudochrobactrum saccharolyticum, 
Serratia liquefaciens, Lysinibacillus xylanilyticus, 
Advenella kashmirensis and Aeromonas hydrophila) 
were maintained on NBTA medium (nutrient agar 
with 0.025% bromothymol blue and 0.004% 
triphenyl tetrazolium chloride) and incubated 
2 days at 28°C. To produce cell suspensions or 
cell-free conditioned filtrates, Five millilitres of 
Luria-Bertani (LB) broth were inoculated with 
one colony of each bacterial isolate, and they 
were stirred constantly (220 rpm) overnight at 
28°C. Then, 400 ml of LB medium with 100 ml 
aliquots of the culture that had been shaken for 
24 hours at room temperature were transferred 
to flasks and agitated at 200 rpm for five days. 
The multiplied bacterial culture was centrifuged 
(13,000 rpm for 30 minutes) at 4°C to obtain the 
supernatant and bacterial pellets. After that, a 0.22 
m Millipore filter was used to separate a filtrate 
free of cells, and the pellet was resuspended 
in sterile distilled water. Further dilution of the 
filtrate with sterilized- distilled water was done 
to obtain concentrations of 300, 150, 75, 50, 25, 
12.5, 8, 4, 2 and 1 μl/ml and then stored at 4°C. 
A spectrophotometer was used to adjust the 
bacterial cell culture from OD600 to 1.0. A spread 
plate with a 10-fold serial dilution generated a 
bacterial culture containing 1 × 106 (CFU/ml).

Multidrug-resistant bacteria preparation
 Four isolates of MRBs (E. coli, S. aureus, 
B. cereus and E. cloacae) were employed. The 
bacteria were plated onto Mueller–Hinton agar 

(MHA), which was then incubated at 37°C for 
24 hours. In order to adjust the 0.5 McFarland 
standard for turbidity, one colony was dissolved in 
0.85% sodium chloride. A sample of the bacterial 
culture (100 μl) was then spread on the MHA for 
a disk diffusion test.38

Antibacterial activity
 An MHA plate containing the MRBs 
was coated with 20 μl of each isolate’s cell 
suspension (106 CFU/ml) or filtrate (150 μl/ml) 
to test the antibacterial potential of the nine 
entomopathogenic bacterial species. Following 
that, the plates were left to incubate for 24 hours 
at 37°C. A clean area from the edge of a bacterial 
colony that was expanding read positive results. A 
disc sensitivity test was conducted on EPB isolates 
that suppressed at least one multidrug-resistant 
bacterium.

Disk diffusion method
 Twenty microliters of each filtrate (150 
μl/ml) or cell suspension (106 CFU/ml) from the 
nine bacterial isolates were loaded onto sterile 
6 mm paper discs, which were then placed on 
MHA plates with the isolates that were resistant 
to multiple drugs. Positive controls included 
antibiotic discs with ampicillin and penicillin, and 
negative controls included discs with distilled 
water. Eight replicates of each entomopathogenic 
bacterial isolate were tested against various MRBs. 
The plates were then stored at 37°C for 24 hours. 
Using a ruler, the clear zone's diameter (mm, 
representing the zone of inhibition) was estimated.

MIC and MBC assays
 To determine the MIC, the broth 
microdilution technique was employed, utilizing 
the bacterial filtrates that give the best results for 
disk diffusion. Ten serial dilutions of the bacterial 
filtrate (300, 150, 75, 50, 25, 12.5, 8, 4, 2 and 1 
μl/ml) were undertaken in a 96-well micro-titre 
plate. In a control treatment, multidrug-resistant 
bacteria were incubated in sterile Mueller–Hinton 
broth. After that, the plates were kept for 24 hours 
at 37°C. The MIC was the minimal filtrate amount 
that caused the well-located bacteria were not 
proliferating. To determine the MBCs, a subculture 
of 10 µl from each well of the 96-well MIC micro-
titre plate was placed onto MHA plates. The plates 
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were then incubated at 37°C for 24 hours. The 
lowest concentration of each filtrate at which 
bacteria did not multiply was the MBC. All MIC 
and MBC assays were performed in triplicate.

Statistical analysis
 Results are displayed as mean±standard 
error (M±SE). A one-way analysis of variance 
was conducted to statistically analyse the data, 
using the CoStat program, followed by multiple 
comparisons. P-values that were 0.05 or less were 
regarded as significant. 

RESULTS

Screening of EPB isolates against multidrug-
resistant bacteria
 The filtrates and the cell suspension of 
bacteria associated with S. feltiae inhibited most 
of the tested multidrug-resistant bacteria, with 
the level of inhibition varying from weak to strong 
(Table 1). E. coli was sensitive to eight of the EPB 
isolates, while seven of them were effective against 
S. aureus. B. cereus and E. cloacae were susceptible 

to six of the bacterial isolates. Among all the EPBs 
examined, X. bovienii filtrates and cells showed 
the strongest inhibition activity (+++) against all 
the tested multidrug-resistant bacteria. Cells of S. 
maltophilia strongly inhabited E. coli, E. cloacae, 
and S. aureus. Filtrates of this bacterium showed 
strong inhibition potential against E. cloacae and 
S. aureus and moderate inhibition activity (++) on 
B. cereus and E. coli. Although S. tumulicola and 
P. mosselii cells exhibited strong inhibition activity 
against E. coli and S. aureus, their filtrates exhibited 
moderate or weak (+) inhibition activity against 
these bacteria. No inhibition activity was detected 
when B. cereus, E. coli and E. cloacae bacteria were 
treated with P. saccharolyticum cells or filtrates. 
Except for E. coli, which was susceptible only to L. 
xylanilyticus cells, all the MRBs were resistant to 
its cells or filtrates (Table 1).

Disk diffusion method
 The method of disk diffusion was used to 
verify the antimicrobial effect of the nine symbiotic 
and non-symbiotic bacteria associated with S. 
feltiae (Table 2, Figure). At a concentration of 150 

Table 1. Antibacterial activity of filtrates or cells of nine EPB species against multidrug-resistant bacteria

EPBs Bacterial     The growth inhibitiona

 suspension 
 form S. aureus E. cloacae E. coli B. cereus

Xenorhabdus bovienii Filtrates  +++ +++ +++ +++
 Cells +++ +++ +++ +++
Stenotrophomonas maltophilia Filtrates  +++ +++ ++ ++
 Cells +++ +++ +++ ++
Stenotrophomonas tumulicola Filtrates  ++ + ++ +
 Cells +++ ++ +++ ++
Pseudomonas mosselii Filtrates  + + ++ +
 Cells +++ + +++ +
Pseudochrobactrum Filtrates  + - - -
saccharolyticum Cells + - - -
Serratia liquefaciens Filtrates  + + + +
 Cells ++ ++ +++ ++
Lysinibacillus xylanilyticus Filtrates  - - - -
 Cells - - + -
Advenella kashmirensis Filtrates  - + + -
 Cells - + + -
Aeromonas hydrophila Filtrates  - - + -
 Cells + - + +
Penicillin  - - - -
Ampicillin  - - - -

aNo inhibition (-): 0–5 mm; weak inhibition (+): 6–10 mm; moderate inhibition (++): 11–15 mm; strong inhibition (+++): > 15 mm
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μl/ml filtrates and 106 CFU/ml cells for all nine 
EPBs, inhibitory zones (means±SE) ranging from 
0.0 to 33.3 mm (P < 0.05) were observed. The 
nine isolates' bacterial cells were more efficient 
than their bacterial filtrates against all of the 

studied MRBs, causing a mean inhibition zone 
of 8.86 mm for the cells and 6.53 mm for the 
filtrates. The largest clear zones (33.3 and 28.9 
mm) were obtained when S. aureus bacterium 
was exposed to X. bovienii cells and filtrates, 

Table 2. Antibacterial potential of filtrates or cells of nine EPBs against multidrug-resistant bacteria according to 
disk diffusion analysis

EPBs Bacterial     Inhibition Zone (mm)a 
 suspension 
 form S. aureus E. cloacae E. coli B. cereus

Xenorhabdus bovienii Filtrates  28.9±0.77 17.9±0.52 21.6±0.38 17.0±0.46
 Cells 33.3±0.62 19.5±0.33 24.6±0.49 21.6±0.49
Stenotrophomonas maltophilia Filtrates  19.3±0.37 18.0±0.46 14.5±0.33 12.0±0.27
 Cells 20.4±0.32 19.4±0.42 17.3±0.37 14.0±0.27
Stenotrophomonas tumulicola Filtrates  13.6±0.53 9.4±0.26 13.3±0.56 7.8±0.37
 Cells 17.9±0.39 12.9±0.39 17.1±0.39 11.8±0.25
Pseudomonas mosselii Filtrates  7.0±0.33 6.4±0.18 12.9±0.48 6.4±0.18
 Cells 16.9±0.29 6.8±0.25 16.5±0.27 6.8±0.25
Pseudochrobactrum Filtrates  6.0±0.0 0.75±0.41 1.0±0.33 0.0±0.0
saccharolyticum Cells 6.4±0.18 2.8±0.49 1.9±0.47 0.75±0.41
Serratia liquefaciens Filtrates  7.6±0.38 7.4±0.26 8.8±0.37 7.9±0.39
 Cells 11.8±0.31 11.5±0.19 18.9±0.29 13.1±0.39
Lysinibacillus xylanilyticus Filtrates  0.0±0.0 0.0±0.0 0.50±0.19 0.0±0.0
 Cells 0.88±0.29 0.0±0.0 6.3±0.16 0.0±0.0
Advenella kashmirensis Filtrates  0.38±0.18 6.0±0.0 6.4±0.18 0.50±0.19
 Cells 1.3±0.41 6.4±0.18 7.1±0.13 0.88±0.29
Aeromonas hydrophila Filtrates  0.38±0.18 0.0±0.0 6.0±0.0 0.63±0.18
 Cells 6.8±0.16 0.50±0.19 7.0±0.0 6.0±0.0
Penicillin  0.38±0.18 0.0±0.0 0.50±0.27 0.0±0.0
Ampicillin  0.63±0.32 0.25±.16 0.63±0.26 0.0±0.0

aIn this experiment, each treatment was represented by four repeats with two plates. The inhibition zone diameters ± standard 
errors are depicted by numbers in each column

Table 3. MICs of EPB filtrates (µl/ml) against multidrug-resistant bacteria

EPBs       MIC (µL/mL)a

 S. aureus E. cloacae E. coli B. cereus

Xenorhabdus bovienii 2 12.5 8 12.5
Stenotrophomonas maltophilia 12.5 12.5 25 50
Stenotrophomonas tumulicola 50 75 50 75
Pseudomonas mosselii 75 75 50 75
Pseudochrobactrum saccharolyticum 75 150 150 ND
Serratia liquefaciens 75 75 75 75
Lysinibacillus xylanilyticus ND ND 300 ND
Advenella kashmirensis 300 75 75 300
Aeromonas hydrophila 300 ND 75 150
Penicillin 300 ND 300 ND
Ampicillin 300 300 300 ND

aThere were three repetitions of each treatment in this test. The numbers in each column indicate the MIC of each symbiotic 
or non-symbiotic bacterium. ND = not detected
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respectively. Moreover, E. coli, B. cereus, and E. 
cloacae growth was inhibited, with average zones 
of (24.6 and 21.6 mm), (21.6 and 17.0 mm), and 
(19.5 and 17.9 mm), respectively. S. maltophilia 
cells and filtrates also inhibited the growth of 
S. aureus, E. cloacae, E. coli and B. cereus, with 
clear zones of 20.4 and 19.3 mm, 19.4 and 18.0 
mm, 17.3 and 14.5 mm, and 14.0 and 12.0 mm, 
respectively. With inhibition zones of 17.9 and 13.6 
mm, 12.9 and 9.4 mm, 17.1 and 13.3 mm, and 
11.8 and 7.8 mm for S. aureus, E. cloacae, E. coli, 
and B. cereus, respectively, the cells and filtrates 
of S. tumulicola were the third most lethal to the 
examined bacteria. S. liquefaciens ranked fourth in 
terms of inhibition zone activity against S. aureus 
(11.8 and 7.6 mm, 11.5 and 7.4 mm, 18.9 and 8.8 
mm and 13.1 and 7.9 mm, respectively). Contrarily, 
S. aureus treated with filtrates of A. kashmirensis 
and A. hydrophila exhibited the smallest inhibitory 
zone (0.38 mm). L. xylanilyticus cells and filtrates 
showed no inhibition activity on B. cereus and E. 
cloacae (Table 2).

MICs
 The values of MIC for the nine symbiotic 
and non-symbiotic bacteria linked to the EPN S. 
feltiae against four bacterial species were also 
assessed, as indicated in Table 3. EPB cell-free 
conditioned media with MICs between 2 and 300 
µl/ml prevented the multidrug-resistant bacteria 
from growing. Among the bacteria tested, S. 
aureus (2 µL/ml) exhibited the highest estimated 
susceptibility to the X. bovienii filtrate, the next is E. 
coli (8 µl/ml), E. cloacae and B. cereus (12.5 µl/ml). 
All the tested bacteria were also sensitive to the 
S. maltophilia filtrate, which showed the strongest 
inhibitory activity (12.5 µl/ml) on S. aureus and 
E. cloacae, followed by E. coli (25 µL/ml) and B. 
cereus (50 µl/ml). S. tumulicola exhibited strong 
activity against S. aureus and E. coli (50 µl/ml) 
and moderate activity against E. cloacae and B. 
cereus (75 µl/ml). The MIC of S. liquefaciens was 
75 µl/ml for all the tested bacteria. At a high MIC 
value (300 µl/ml), the L. xylanilyticus filtrate was 
only effective against E. coli. A. kashmirensis, A. 
hydrophila, penicillin and ampicillin also exhibited 

Figure. Disk diffusion test of the symbiotic entomopathogenic bacterium X. bovienii's filtrate against multidrug-
resistant bacteria. Clear zone of S. aureus (A13), E. coli (B18), B. cereus (C17) and E. cloacae (D14). Penicillin (B17), 
ampicillin (B20) and negative control (D15)
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low activity against S. aureus, with an average MIC 
value (300 µl/ml).

MBCs
 Except for EPB L. xylanilyticus, the 
multidrug-resistant bacterium S. aureus was most 
vulnerable to all filtrates, with MBCs ranging from 
4 to 300 µl/ml (Table 4). With an MBC of 4 µl/ml, 
the X. bovienii filtrate had higher activity against 
S. aureus than any of the other tested bacteria, 
but a MIC value of 12.5 µl/ml was reported for E. 
coli, E. cloacae, and B. cereus. S. aureus was the 
least susceptible bacterium that was suppressed 
by A. kashmirensis and A. hydrophila. E. coli had 
less sensitivity to L. xylanilyticus and B. cereus to A. 
kashmirensis, with these having the highest MBC 
values (300 µl/ml).

DISCUSSION

 The present study investigated nine 
symbiotic and non-symbiotic entomopathogenic 
bacterial species previously isolated from the 
EPN S. feltiae against four multidrug-resistant 
bacteria. The findings support those reported in 
a previous study, in which the five EPBs associated 
with S. feltiae were identified, and their efficiency 
against the two aphid species Aphis illinoisensis 
and A. punicae, was evaluated.37 The results of 
the current study also confirm those of earlier 
work, in which the authors isolated Photorhabdus 

and Xenorhabdus spp. from Heterorhabditis 
and Steinernema spp., respectively, in the same 
province and revealed their complex behaviours 
against Meloidogyne incognita  infecting 
pomegranate under greenhouse conditions.35 
The current research clearly demonstrates that 
entomopathogenic bacterial isolates provide 
a novel approach for preventing the spread of 
several multidrug-resistant bacteria. 
 Based on their antibacterial activity, 
the majority of the nine species of S. feltiae-
associated bacteria have been shown to prevent 
the proliferation of pathogenic bacteria, with 
variation in their antibacterial activity range. This 
might be as a result of each bacterium's ability to 
synthesize therapeutic molecules or the multidrug-
resistant bacteria's sensitivity. In addition, it was 
clear that the bacterial cells of the nine species 
were more potent than were the filtrates at 
eliminating multidrug-resistant bacteria, despite 
having low toxicity. Among the evaluated bacterial 
isolates, the strongest inhibitory impact was 
observed in cells and filtrates from the symbiont 
X. bovienii, and L. xylanilyticus displayed the 
weakest inhibition activity against all the tested 
multidrug-resistant bacteria. These results are 
consistent with those of previous studies on E. 
cloacae, K. pneumoniae, E. coli, B. subtilis, B. 
cinerea, S. pyogenes, S. aureus, B. anthracis, P. 
capsici, R. solani and F. effusum.25-31 Similarly, 
these results agree with those of other research 

Table 4. MBCs of EPB filtrates (µl/ml) against multidrug-resistant bacteria

EPBs       MBC (µL/mL) a 

 S. aureus E. cloacae E. coli B. cereus

Xenorhabdus bovienii 4 12.5 12.5 12.5
Stenotrophomonas maltophilia 12.5 25 25 50
Stenotrophomonas tumulicola 75 75 75 75
Pseudomonas mosselii 150 75 75 150
Pseudochrobactrum saccharolyticum 150 150 150 ND
Serratia liquefaciens 150 75 75 75
Lysinibacillus xylanilyticus ND ND 300 ND
Advenella kashmirensis 300 150 75 300
Aeromonas hydrophila 300 ND 150 150
Penicillin 300 ND 300 ND
Ampicillin 300 300 300 ND

a All experiments were conducted in triplicate. The numbers in each column indicate the MBC of each symbiotic or non-symbiotic 
bacterium. ND = not detected
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on the pathogenic soybean fungus Sclerotinia 
sclerotiorum and the larvae of the fall webworm 
(Hyphantria cunea).39,40

 Thus far, 29 species of Xenorhabdus 
and 20 species of Photorhabdus that produce 
different types of natural products have been 
isolated worldwide, including Europe, Australia, 
America, Africa and Asia.19,41 Xenorhabdus strains 
of EPB have strong commercial potential in the 
area of new antibiotic production, with such 
antibiotics targeting clinically relevant bacteria.25 
With the exception of P. saccharolyticum, the 
data obtained showed that E. coli was susceptible 
to all of the tested bacterial filtrates and cells. 
S. aureus was susceptible to all isolates, except 
L. xylanilyticus and A. kashmirensis. E. cloacae 
showed resistance to P. saccharolyticum, L. 
xylanilyticus and A. hydrophila. Furthermore, B. 
cereus appeared resistant to P. saccharolyticum, 
L. xylanilyticus and A. kashmirensis. Accordingly, 
based on values of the inhibition zone, MIC and 
MBC, the toxicity of EPBs toward the tested MRBs 
could be arranged as follows, in descending order: 
X. bovienii > S. maltophilia > S. tumulicola > S. 
liquefaciens > P. mosselii > A. kashmirensis > A. 
hydrophila > P. saccharolyticum > L. xylanilyticus. 
In descending order, the susceptibility of the MRBs 
was as follows: E. coli > S. aureus > E. cloacae > 
B. cereus. These findings are in accordance with 
those of earlier studies, which showed that X. 
budapestensis, X. szentirmaii, X. innexi, X. ehlersii, 
X. nematophila, X. bovienii and X. cabanillassii, 
as well as P. luminescens, inhibited the growth 
of clinical and multidrug-resistant isolates of S. 
aureus, E. coli, K. pneumoniae, and B. subtilis.26,42 
It is evident that Xenorhabdus strains possess a 
wide variety of antibacterial components, making 
them potential sources of novel antibiotics against 
S. aureus, E. coli, E. cloacae and B. cereus that resist 
conventional antibiotics.43 These results were in 
agreement with those of previous research, which 
reported that Xenorhabdus produced derivatives 
of xenocoumacin and amicoumacin,44,45 each of 
which has been demonstrated to be an effective 
antibiotic against S. aureus.29 All Photorhabdus spp. 
produce isopropylstilbene,46,47 which has a wide 
range of biological properties, including antibiotic 
activity against E. coli and S. aureus.33 It has been 
proven that the S. aureus strains ATCC20475, 
PB36, and PB57 are sensitive to the inhibitory 

action of Photorhabdus extracts.48 Interestingly, 
the antibacterial activity of complete cell-free 
media was significantly higher than that of any 
isolated, recognized or patented molecules (e.g. 
nematophin).49 Xenorhabdus strains’ antibiotically 
active, unpurified, cell-free liquid cultures are 
effective against a wide range of pathogens, 
including bacteria, fungus and protozoa. In earlier 
research, the protease inhibitor protein-encoding 
gene from the symbiotic bacterium X. bovienii 
strains BJFS526 and Xbpi-1 was discovered, 
produced, and evaluated for its impact on the pea 
aphid Acyrthosiphon pisum.50,51

 According to Fuchs et al.,52 X. szentirmaii 
is a uniquely important source of peptides with 
excellent antibacterial properties that inhibit 
almost all known phytopathogens. In the present 
study, S. maltophilia and S. tumulicola isolates, 
either cells or filtrates, ranked second to X. bovienii 
in inhibiting the growth of the tested multidrug-
resistant bacteria. The results agree with those of 
a previous study, which revealed the termiticidal 
activity associated with S. maltophilia's synthesis 
of bacterial chitinases.53 In addition, they are in 
accordance with prior research that discovered S. 
maltophilia might have antagonistic effect against 
a spectrum of fungi and bacteria that are multidrug 
resistant.54 Berg55 stated that S. maltophilia 
suppressed the phytopathogen Rhizoctonia solani 
growth, probably because of antibiosis and the 
production of certain lytic enzymes that destroy 
pathogenic fungi. Further studies showed that 
the metabolic complexity of S. maltophilia is 
responsible for the creation of novel bioactive 
compounds, including metabolites that could be 
used in the biocontrol of bacteria, in addition to 
the existence of enzymes that can be employed 
in therapeutic applications.56 In the present 
study, S. liquefaciens and P. mosselii exhibited 
moderate inhibition activity against the tested 
bacteria. The other EPB isolates, L. xylanilyticus, P. 
saccharolyticum and A. hydrophila, exhibited less 
bactericidal activity. In contrast, a previous study 
reported that crude chitinase from A. hydrophila 
may act as a potent biocontrol agent against 
insects and that it may be a good alternative to 
chemical pesticides.57 The present study confirmed 
the potential of one symbiotic and eight non-
symbiotic entomopathogenic bacterial species 
associated with the EPN S. feltiae in Saudi Arabia 
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as antibacterial agents. The present findings are 
in line with previous studies on nematicidal and 
insecticidal activities conducted in the Taif distinct 
of Saudi Arabia.35-37

CONCLUSION

 In the current study, the antibacterial 
efficacy of one symbiotic and eight non-symbiotic 
entomopathogenic bacterial species associated 
with S. feltiae against four important multidrug-
resistant bacterial species was investigated. 
Overall, the results indicated that the EPB isolates 
had varying effects on several multidrug-resistant 
bacterial species. This might be due to the capacity 
of each bacterial species to produce beneficial 
compounds or the sensitivity of the MRBs to the 
specific metabolites produced by each symbiont 
or non-symbiont. Among the species tested, 
the symbiont X. bovienii exhibited excellent 
antibacterial activity against the four tested 
pathogenic bacterial species. The findings might 
serve as a starting point for the discovery of new 
bioactive substances.
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