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Abstract
Diabetic foot ulcers (DFU) in patients with uncontrolled diabetes mellitus are considered a global public 
health menace that is highly associated with morbidity and mortality. Pathogenic microorganisms 
entrenched deep into diabetic foot wounds are the causative agents for delayed healing and escalation 
of diabetic foot wound severity. Pseudomonas aeruginosa is a common opportunistic pathogen 
associated with several nosocomial infections, cystic fibrosis, and one of the most critical pathogens 
often isolated from acute and chronic diabetic foot ulcers. The organism can exhibit resistance to 
a wide range of antibiotics like ciprofloxacin, cefotaxime, and meropenem, thereby causing severe 
damage to the host tissues, followed by amputation of the affected foot region. Due to their ability 
to synthesize biofilms, the wound becomes more chronic and incurable, posing a serious threat to 
immunocompromised diabetic patients. This review highlights on the insights of pathophysiology 
and microbiological profile of Diabetic foot ulcers, the resistance mechanisms, and the therapeutics 
available for dealing with drug-resistant Pseudomonas, which could help clinicians in treating DFUs. 

Keywords: Pseudomonas aeruginosa, Diabetic Foot Ulcers, Biofilm, Antibiotic Resistance, Quorum Sensing



  www.microbiologyjournal.org2Journal of Pure and Applied Microbiology

Chatterjee & Sivashanmugam | J Pure Appl Microbiol. 2024. https://doi.org/10.22207/JPAM.18.2.08

INTRODUCTION

 Diabetes mellitus is one of the oldest 
metabolic diseases known to mankind. It is 
characterized by hyperglycaemia resulting from 
low insulin secretion or increased glucagon 
production or insulin resistance. Diabetes is mainly 
of two types based on the absence or minimal 
secretion of insulin and reduced response to insulin 
to peripheral receptors. Type I Diabetes Mellitus 
(TIDM) is caused due to autoimmune destruction 
of β-cells by ICA8 and anti-GAD65 autoantibodies. 
Exogenous insulin treatment is necessary because 
TIDM typically manifests in children and adults 
before the age of 30, when blood insulin levels 
are lowered and patients stop responding to 
the anti-diabetic regimen. Type II Diabetes 
Mellitus (TIIDM) is caused by the development 
of insulin resistance due to a sedentary lifestyle, 
comorbidities, and other metabolic disorders.1 
According to an epidemiology survey in 2021, 
globally, approximately 536 million people are 
suffering from diabetic mellitus, with a total 
anticipated cost of 966 billion USD for diabetes-
related healthcare.2 In India, 77 million are 
diabetic, which is anticipated to climb to nearly 
134 million by 2045.3 Diabetes is associated 
with many complications and is the primary 
cause of neurological disease, cardiovascular 
disease, kidney failure, blindness and lower limb 
amputation.4,5

 Diabetic foot ulcer (DFU), a well-known 
TIIDM-associated complication, is a primary cause 
of hospitalisation, accounting for 20% of all hospital 
admissions and morbidity.6,7 Approximately 58% of 
patients with foot ulcers are prone to septicaemia.8 
Untreated DFU can progress into ulcers and 
gangrene eventually leading to limb amputation 
and death.8,9 It has been estimated that DFU is 
the cause of 50 to 70% of limb amputations.10 
In addition to morbidity, DFUs have significant 
socioeconomic repercussions. The average cost 
of hospital admission for amputation in the US is 
around $100,000.11,12 The price of treatment and 
management varies by nation, from $188,000 in 
the US to $3060 in Tanzania.13 The price of DFU 
therapy in India, which has one of the highest 
rates of diabetes, is roughly $1960.14 In India, it is 
anticipated that it will take 5.7 years of a patient's 
income to treat a DFU.15

 A deeper understanding into the systemic 
progression of the infections, treatment and 
management of the infection is required. Only few 
studies are available to understand the correlation 
of Pseudomonas in diabetic foot ulcers. Hence, the 
present review aims to discuss the pathogenesis 
of diabetic foot ulcers emphasizing the role of 
multidrug resistant Pseudomonas aeruginosa in 
the progression of diabetic foot infections and 
the existing therapeutics available to combat the 
resistance which could be further studied to deal 
with DFU complications.

Pathophysiology of diabetic foot ulcer
 DFU is often manifested by lesions 
and abrasions in the skin, but its aetiology is 
multifactorial. The pathophysiology of DFU 
is attributed to a complex triad of peripheral 
neuropathy, vascular foot abnormalities, arterial 
occlusive damage and decreased immune 
response to infection.16,17 Hyperglycaemia induces 
aberrant metabolic changes, such as an increase in 
intracellular glycosylated nerve proteins, protein 
kinase C activation, increased hexosamine flow, 
and polyol pathway, all of which lead to nerve 
injury.18 Studies have shown that motor neuron 
damage causes an imbalance in flexor-extensor 
coordination and the development of anatomic 
abnormalities such as Charcot's foot, hammerhead 
toes, and claws.18,19 Damage to sensory nerves 
results in loss of sensation and proprioception, 
which lowers the pain threshold, making the foot 
more susceptible to heat and trauma, thereby 
increasing the risk of foot ulcers. Autonomic nerve 
damage inhibits sweat glands, and the foot's 
capacity to moisten skin may deteriorate, resulting 
in epidermal fissures and skin breakdown, 
providing viable channel for microbial invasion 
and infections.7,20,21 These neuropathy-related 
impairments result in "high-pressure" zones at 
the metatarsal head on the plantar surface of 
the foot.22 Hyperglycaemia-induced vascular 
alterations in the peripheral arteries resulted in 
a decrease in vasodilators and increased plasma 
thromboxane A2 levels. As a result, peripheral 
arteries experience vasoconstriction and plasma 
hypercoagulation, which ultimately increases 
the risk of ischemia and ulceration.5 Additionally, 
immunological alterations enhance T lymphocyte 
apoptosis, which lowers the foot ulcers' ability 
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to heal.23 Due to these cellular and metabolic 
changes, diabetic patients experience repetitive 
trauma from walking in combination with 
decreased sensation and proprioception. This 
leads to the dislocation of the protective plantar fat 
pads, which can result in ulceration and infection 
from inadequate skin protection or bad footwear.24

 Patients' poor attention to their skin, 
failure to recognise cutaneous injuries (redness, 
blister formation), or delayed treatment can result 
in the progression of foot lesions to ulcers and 
the development of microbial invasive soft tissue 
infection. Eventually, the infection penetrates into 
the deep skin layers and spreads to the midfoot 
muscles, joints, and tendon sheaths. As the 
infection progresses, the deep tissue fills with pus, 
leading to tissue necrosis and abscess formation. 
One-half of major (above- or below-knee) lower 
extremity amputations in people with diabetes are 
due to microbial infection.7,25 Flowchart depicting 
the pathophysiology of diabetic foot ulcer is given 
in Figure 1. 

Microbiology profile of diabetic foot ulcers 
focussing the different regions of India
 Diabetes foot wounds have a complicated 
microbiome. A diabetic foot ulcer is caused by 
recurring infections from aerobic, anaerobic 
and fungal microorganisms, either singly or 
in combination.26 Microorganisms isolated 
from diabetic food wounds were identified 
using 16S rRNA, short gun metagenomic and 
pyrosequencing.27,28 According to the American 
Infectious Disease Society, DFUs are divided 
into three subcategories: mild infections with 
superficial symptoms, moderate infections with 
deeper and pronounced symptoms, and severe 
infections with systemic symptoms or metabolic 
abnormalities.29 Mild infections appear to have 
a simpler microbiota inhabited by common 
skin commensals such as beta-haemolytic 
Streptococcus (S. agalactiae; S. pyogenes; S. 
mitis), aerobic Gram-positive cocci (Staphylococcus 
aureus), Coagulase negative Staphylococcus 
epidermidis, which have been identified as 

Figure 1. Pathophysiology of Diabetic Foot Ulcer
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Table 1. Microbiology profile of diabetic foot ulcer in different geographical regions of India

Region  North India South India North-East East India West India
   India

Total number of patients  102 77 150 148 100
Study duration Dec, 2008 to May, 2003 to Feb, 2015 to - July to 
 Feb, 2010  March, 2004 Jan, 2016  Oct 2012
Total Aerobes 152 113 182 240 92
Gram-positive aerobes 55 (36.1%) 48 (62.3%) 73 (40.1%) 88 (36.6%) 20 (21.73%)
Staphylococcus aureus 37 (24.3%) 19 (24.5%) 46 (24.86%) 72 (30%) 6(7%)
Enterococcus faecalis 5 (3.2%) 3 (3.8%) 27 (14.59%) 8 (3.3%) 
Beta-hemolytic streptococcus 5 (3.2%) - - 4 (1.7%) 
CONS 4 (2.6%) 20 (25.9%) - 4 (1.7%) 2 (2%)
Coryneform sp. 4 (2.6%) - - - -
Corynebacterium jeikeium - 3 (3.8%) - - -
Bacillus subtilis - 3 (3.8%) - - -
Gram-negative aerobes 97(63.8%) 65 (84.4%) 109 (59.8%) 152 (63.3%) 72 (78.26%)
Escherichia coli 41 (42.2%) 17 (22.0%) 37 (20.0%) 26 (10.8%) 15 (17%)
Pseudomonas aeruginosa 23 (23.7%) 23 (29.8%) 22 (11.89%) 28 (11.7%) 25 (27%)
Klebsiella oxytoca 11 (11.3%) 1 (1.2%) - 2 (0.8%) -
Klebsiella pneumoniae 9 (9.2%) 9 (11.6%) 22 (11.89%) 22 (9.2%) -
Klebsiella sp.     20 (22%)
Proteus vulgaris 5 (5.1%) 1 (1.2%) - 16 (6.7%) -
Proteus mirabilis 2 (2.0%) 8 (10.3%) 9 (4.86%) 10 (4.2%) -
Proteus sp.      4 (3%)
Acinetobacter spp. 5 (5.1%) - 7 (3.78%) 12 (5.0%) 2 (2%)
Morganella morganii 1 (1.0%) - 4 (2.16%) - -
Citrobacter koseri - 2 (1.2%) - 2 (0.8%) -
Citrobacter freundii - 1 (1.2%) 1 (0.54%) 10 (4.2%) -
Klebsiella ozaenae - 1 (1.2%) - - -
Enterobacter aerogenes - 1 (1.2%) 6 (3.24%) 22 (9.2%) -
Edwardsiella tarda - 1 (1.2%) - - -
Serratia spp.   1 (0.54%) - -
Stentrophomonas maltophilia    2 (0.8%) -
Total Anaerobes 17  5 - 21 -
Gram-positive anaerobes 15 (88.2%) 2 (2.5%) - 7 (33.3%) -
Peptostreptococcus sp. 6 (35.2%) 2 (2.5%) - 7 (33.3%) -
Peptostreptococcus anaerobius 4 (23.5%) - - - -
Propionibacterium sp. 3 (17.6%) - - - -
Clostridium perfringens 1 (5.8%) - - - -
Eggerthella lenta 1 (5.8%) - - - -
Gram-negative anerobes 2 (11.7%) 3 (3.8%) - 14 (66.7%) -
Bacteroides ureolyticus 2 (11.7%) - - 14 (66.7%) -
Bacteroides fragilis  3 (3.8%) - - -
Reference [38] [39] [40] [41] [42]

pathogens in foot ulcers.27 Among these isolates, 
S. aureus was reported to be the most common 
isolate ranging from 25% to 30% from early 
diabetic wounds.30,31 Group B Streptococcus 
associated infections are rising in the present days 
leading to soft tissue damage and severe blistering 

cellulitis followed by amputation.32 Moderate 
infection wounds are primarily colonised by 
aerobic, non-fermenting Gram-negative bacilli i.e., 
Enterobacteriaceae (Escherichia coli, Morganella 
morganii, Klebsiella pneumonia, Proteus mirabilis), 
Pseudomonas aeruginosa, Citrobacter spp., 
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Enterobacter spp. and Acinetobacter spp. In 
several studies, Gram-negative isolates (50%) 
were found to be higher than Gram-positive 
isolates (30%).33,34 P. aeruginosa, which accounts 
for 14% of the isolates, is a terrible and vital 
pathogen with antibiotic resistance that can cause 
significant tissue damage and lead to sepsis and 
amputation.35,36 Chronic infection wounds are 
inhabited by aerobic Gram-positive cocci, aerobic 
Gram-negative bacilli and anaerobic pathogens 
(Bacteroides fragilis; Propionibacterium spp; 
Clostridium spp; Peptostreptococcus spp).37 Table 
1 summarises the microbiological profile of 
diabetic foot ulcers done using microbial culture 
techniques in different geographical locations of 
India, where 23.7% of DFU cases in North India,38 
29.8% in South India,39 11.89% in North-East 
India,40 11.7% in East India,41 and 27% in Western 
India42 are caused by Pseudomonas aeruginosa at 
different study periods. 

Polymicrobial colonization in diabetic foot Ulcers
 Chronic wound infections are typically 
polymicrobial with varied aerobic Gram-negative 
bacilli and obligate anaerobic bacteria. According 
to reported studies, polymicrobial infections 
were estimated to occur in 75% to 83% of chronic 
DFU cases.34,43 Polymicrobial infections could be 
induced by anaerobes interacting with aerobes, 
such as the interaction of E. coli with B. fragilis. 
As aerobic bacteria multiply, they use oxygen and 
enhance the growth conditions for anaerobic 
bacteria, assisting anaerobes in dealing with 
the harmful effects of oxygen. Furthermore, 
microbial isolates from wounds were found to 
tolerate and thrive at a wider pH range, which 
helps them circumvent the limitations of the 
external macroenvironment and promote the 
growth and survival of microbial communities. 
As a result, the production of virulence factors 
such as hemolysins, collagenases, proteinases, 
and short-chain fatty acids gets increased, which 
promotes inflammation and hinders the healing of 
wounds.6,44-46 An additional pathogenic property 
of many organisms is their ability to become 
enveloped in biofilm. Due to hyperglycaemic 
condition, P. aeruginosa or S. aureus synthesizes 
thick biofilms, decreasing antibiotic susceptibility 
and hindering wound healing.47 These biofilms 
serve as barriers that inhibit the diffusion of 

antibiotics, antimicrobial proteins, lysozymes, 
and defensins, while simultaneously protecting 
organisms from phagocytosis and promoting 
antibiotic resistance.48

 The growing rate of isolation of antibiotic-
resistant pathogens, particularly methicillin-
resistant S. aureus (MRSA), glycopeptide-
intermediate S. aureus (GISA), vancomycin-
resistant enterococci (VRE) and highly resistant 
P. aeruginosa strains has become a significant 
problem. Many organisms' capacity to form biofilm 
encapsulations is another trait that makes them 
harmful.29,49 Also, recent studies showed there was 
an increased incidence of P. aeruginosa in diabetic 
wounds, especially in geographical locations with 
hot and humid climates and its management is 
highly challenging.50 Understanding the physiology 
involved in making the organism highly resistant to 
antibiotics is critical. The following sections review 
the role of Pseudomonas biofilm production, 
antibiotic resistance, and treatment options 
available in managing infections.

Antibiotic resistance mechanism in Pseudomonas 
aeruginosa
 Diabetic foot ulcers is a very serious 
complication of diabetes mellitus which exhibits 
polymicrobial colonisation and treatment of 
DFU caused by Pseudomonas aeruginosa is 
extremely challenging due to its propensity for 
antibiotic resistance. The patients with DFUs 
are generally treated using empiric antibiotic 
therapy and antibiotics such as ceftazidime, 
cefepime, piperacillin-tazobactam, imipenem, 
or meropenem are commonly used in these 
scenarios.51 The organism developed several 
mechanisms of antibiotic resistance: production 
of beta-lactamase enzyme for drug inactivation, 
restrictive outer membrane uptake and efflux 
mechanism, mutational changes of targeted 
enzymes or proteins and formation of biofilms.52

Production of beta-lactamase and aminoglycosides 
modifying enzymes
 P. aeruginosa possesses two genes- the 
inducible ampC gene and the regulatory gene 
ampR. Mutations in ampR gene trigger the ampC 
gene's overexpression and the production of 
beta-lactamase protein. Beta-lactamase can 
hydrolyze the amide bond in the beta-lactam ring, 
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thereby inactivating beta-lactam antibiotics.53 
Downregulation of ampR was found to be due 
to excessive ceftazidime treatment.54 Based on 
Amino acid sequences, beta-lactamases are 
further classified into A, B, C and D. Class A, C and 
D have serine Amino acid residue in their active 
site and were reported to hydrolyze beta-lactam 
ring. Class B, also known as metallo-lactamases, 
requires Zn2+ ions for hydrolysis of the beta-lactam 
ring. Some Pseudomonas isolates were reported to 
synthesize another type of beta-lactamases known 
as extended-spectrum beta-lactamases (ESBLs) 
that has the ability to hydrolyze beta-lactam ring 
of majority antibiotics such as cephalosporins, 
penicillin and aztreonam.55-57

 P. aeruginosa is also highly resistant 
to aminoglycosides antibiotics, which contain 
an aminocyclitol ring linked to amino sugars by 
glycosidic bonds. P. aeruginosa modifying enzymes- 
aminoglycoside acetyltransferase, aminoglycoside 
phospho-transfer and aminoglycoside nucleotide 
transferase catalyse the structural modifications 
and inactivation of kanamycin, streptomycin and 
neomycin.58,59

Outer membrane barrier and efflux mechanism
 The outer membrane of Pseudomonas 
is highly selective and made of specific porins 
(OprB, OprD, OprE, OprO, OprP), non-specific 
porins (OprF) and efflux porins (OprM, OprN 
and OprJ).59 OprF was found to be a major porin 
for the transport of ions and carbohydrates but 
has low permeability to antibiotics.60 The OprD 
is the main porin for the influx of antibiotics, 
specifically charged lysine molecules. It contains 
a binding site for carbapenems and its absence in 
the bacterial cell causes carbapenem resistance. 
Aminoglycosides, antibiotics and colistin only cross 
the membrane via binding to lipopolysaccharides 
outside the cell membrane. Studies on laboratory 
Pseudomonas strains showed that overexpression 
of OprH (gated porin) blocks lipopolysaccharides, 
thereby preventing the influx of antibiotics 
through the membrane.61

 In general, bacterial efflux pumps are 
mainly used for the extrusion of toxic elements. 
In P. aeruginosa, four main efflux pumps are 
used for expelling antibiotics.62 MexAB-OprM 
is able to pump out beta-lactam antibiotics 
and quinolones,63 MexXY-OprM extrusion of 

aminoglycosides,59 MexEF-OprN expels mainly 
quinolones,64 and MexCD-OprJ expels only 
β-lactams.65 Overexpression of these genes 
were reported to increase antibiotic resistance 
contributing to the development of resistance to 
multiple drugs.66

Mutational changes of targeted enzymes or 
proteins
 Pseudomonas aeruginosa  poses a 
significant challenge in clinical settings due 
to its ability to undergo mutational changes 
within the genome thereby preventing the 
binding of specific antibiotics. For example, 
mutations in the mutations in the gyrA and 
parC genes, encoding for bacterial DNA gyrase 
and topoisomerase IV respectively, prevent 
the binding of fluroquinolones.67,68 Similarly, 
mutations in the genes encoding for Penicillin 
binding proteins (PBPs) confer beta-lactam 
resistance. Another mechanism involves mutations 
that reduce the bacterial cell wall permeability 
towards antibiotics, viz., aminoglycosides and 
carbapenems, altering the porin channels such 
as oprD. On the other hand, mutations in mexR, 
nalC and nalD responsible for the regulation of 
the mexAB-oprM efflux pump system, results in 
its overexpression, causing resistance towards 
antibiotics along with biofilm formation.69 These 
mutational changes in the bacterium plays a 
crucial role for its survival under stress and hence 
understanding the underlying mechanisms 
would be critical in developing strategies towards 
combatting antibiotic resistance.

Pseudomonas biofilm
 Biofilm is a matrix of extracellular 
polymeric substance (EPS) embedded with 
aggregate microbial communities and helps in the 
colonization and attachment of microbial cells to 
the surface. It safeguards the colonized organisms 
from fluctuating environmental conditions and 
prevents antibiotic entry, thereby decreasing 
antibiotic susceptibility. Pseudomonas aeruginosa 
is well-known for its biofilm synthesis, making it 
an ideal model for studying biofilm development.
 T h e  m a i n  c o m p o n e n t s  o f  t h e  
P. aeruginosa biofilm matrix are polysaccharides, 
extracellular DNA (eDNA), proteins, and lipids. 
The three main exopolysaccharides, Psl, Pel, and 
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alginate, play a major role in the biofilm initiation, 
attachment of organisms to the surface and 
maintaining the stability of the biofilm.70,71 Pel 
(pellicle), a cationic glucose-rich polysaccharide 
and Psl (polysaccharide synthesis locus), a neutral 
mannose-rich pentapolymer comprising mainly 
mannose, glucose and rhamnose, are present 
in non-mucoid strains of P. aeruginosa whereas 
alginate present in only mucoid strains.72,73 The 
primary structural elements of the matrix, Psl and 
Pel, are important for developing biofilms in early 
stages, sessile cell adhesion to surfaces, improving 
cell-to-cell attachment i.e., aggregate formation, 
and maintaining the structural stability of the 
biofilm architecture. Additionally, Psl functions 

as a signalling molecule to encourage increased 
cyclic 3′5′ GMP production to create thicker and 
more durable biofilms,74 whereas Pel enhances 
bacteria tolerance to aminoglycoside antibiotics 
and antibiotic colistin.9,75 Both the polysaccharides 
protect bacteria embedded in biofilm from 
neutrophil phagocytosis and antimicrobials, 
creating a powerful defense strategy for the 
progression of the infection.73,76,77 However, 
Pseudomonas strain-specific Psl and Pel switch 
synthesis depend on the environmental conditions 
of the wound. Alginate, an acetylated linear, 
unbranched biopolymer of mannuronic acid and 
glucuronic acid residues, is reportedly synthesized 
due to mucA22 allele mutation in mucoid strains. 

Figure 2. Schematic illustration of biofilm formation in Pseudomonas aeruginosa through three main quorum 
sensing systems-Las, Rhl and PQS systems
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Alginate contributes to the maturation of biofilm, 
protection from phagocytosis and retention of 
water and nutrients.78,79,80

 Extracellular DNA (eDNA) released into 
the biofilm due to cell lysis is one of the important 
components of the biofilm matrix with many 
functions. It is a nutrient source to bacteria in 
biofilms, acts as an interconnecting compound 
for the formation of microbial aggregates in 
biofilm maturation, facilitates twitching motility 
for biofilm expansion and lastly creates an acidic 
environment in biofilms, thereby limiting the 
entry of antimicrobial agents.81-83 The extracellular 
appendages of P. aeruginosa, such as the flagella, 
type IV pili and fimbriae, in addition to motility, 
also function as adhesives in the interactions 
between cells and surfaces as well as in the 
development of microcolonies in biofilms.84,85 

Quorum sensing mechanism and biofilm 
formation
 Quorum sensing is another crucial P. 
aeruginosa regulation mechanism that monitors 
population size by creating and detecting diffusible 
signal molecules that control the motility of the 
organism, synthesis of virulence factors and 
biofilm formation. Auto signalling synthases 
activate three main QS systems-Las, Rhl and 
PQS systems via lactone signaling molecules 
(3O-C12-HSL, C4-HSL, 2-heptyl-3-hydroxy-4-
quinolone). They trigger the synthesis of functional 
elements such as rhamnolipid, pyocyanin, 
pyoverdine, Pel polysaccharides and lectins.76,86 
Rhamnolipid, a biosurfactant, maintains the pores 
and channels between microcolonies so that liquid 
and nutrients can pass through mature biofilms.87 
Pyoverdine can bind and transport iron, which is 
essential for the development of biofilms.88 The 
cytotoxic compound pyocyanin lyses cells and 
releases eDNA, increasing the fluid's viscosity and 
physicochemical interactions between the biofilm 
matrix and its environment. It also encourages 
cellular aggregation.89 Pel polysaccharides interact 
with eDNA through anionic-cationic interactions 
to strengthen the biofilm.88 LecA and lecB, two 
soluble proteins with adhesive capabilities, enable 
adhesion to biological surfaces and the retention 
of both cells and exopolysaccharides in a growing 
biofilm.90,91 In addition, rhl regulation of swarming 
and twitching motilities in bacterial translocation 

has been reported to be an important indirect 
relationship between biofilm development and 
QS. In the presence of glutamate or succinate as 
a carbon source, swarming motility results in flat, 
uniform biofilms.92 Twitching motility, a flagella-
independent translocation, resulting in forming P. 
aeruginosa microcolonies in iron-limited media.93 
Together with other polymeric elements, these 
molecular and biological interactions lead to 
the formation of a developed and robust biofilm 
(Figure 2).

Current Pseudomonas specific therapeutic 
strategies in controlling diabetic foot ulcer
 Biofilms are critical in DFU because the 
colonizing bacteria interact to generate a synergistic 
environment conducive for infection progression 
and as a result, the formation of a chronic wound. 
Due to ineffective antibiotic therapy, alternatively 
that has gained the interest of researches is 
biofilm-based wound therapy. The first step in 
this therapy is the degradation of the biofilms, 
followed by the application of antimicrobial 
drugs to kill or inhibit microorganisms embedded 
in the wound. As the biofilm bioburden level 
decreases, so does the inflammatory response 
(neutrophils and macrophages), proteases and 
reactive oxygen level decreases. As a result, the 
wound will transition from a chronic to an active 
healing condition. This results in active healing of 
the wound. In 2017, World Health Organization 
identified P. aeruginosa as one of the most harmful 
bacteria and categorized it as a priority pathogen 
for the development of new targeted drug 
deliveries. Current DFU therapies still in clinical 
trials mainly focus on controlling Pseudomonas 
biofilm formation, inhibiting quorum sensing 
pathway essential for biofilm formation and other 
specific enzymes to develop potent antimicrobial 
therapeutics. Table 2 summarizes therapeutics 
against P. aeruginosa in diabetic foot ulcers. 

Potential therapeutics used for dealing antibiotic 
resistance in Pseudomonas aeruginosa
Anti-biofilm therapeutics
 Enzymatic and synthetic therapeutics are 
being employed to degrade and disperse biofilms 
for controlling Pseudomonas infections. Microbial 
enzymes such as alginate lyase,103 and glucosyl 
hydrolases (dextranase and mutanase),104,105 were 
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therapeutically being used singly or in combination 
with other antibiotics targeting exopolysaccharide 
polymers and alginate components of the biofilm. 
Deoxyribonuclease (DNAase) extracted from the 
human eye were applied for the degradation 
eDNA.106 Naturally, Ginger (Zingiber officinale 
Rosc) extracts were reported to inhibit biofilm 
formation by decreasing the production of cyclic 
3'5' GMP.107 Similarly, ethanol extracts containing 
casbane diterpene from Croton nepetaefolius 
Baill plant were found to inhibit biofilm formation 
by interacting with lipopolysaccharides of cell 
membranes.108 Marine sponges (Agelas conifer, 
Agelaceae) synthesize pyrrole-imidazole alkaloids 
bromoageliferin, which has been shown to prevent 
the growth of new biofilms and disperse existing 
ones.109 Sulphonamides such as dimethylthiophene 
have potent anti-biofilm activity and are C-glycoside 
inhibitors with high affinity towards lecB protein 
of Pseudomonas.96 Additionally, low dose of nitric 
oxide gas was found to disperse biofilm and expose 
microbial species to antibiotics.110 Temporin B from 
frogs,111 indolicidin from the cytoplasmic granules 
of bovine neutrophils.112 Human beta-defensin 3,113 
and many others have been reported to have anti-
biofilm activities. Anti-microbial peptides could be 
promising alternative therapeutics to deal with 
antimicrobial resistance in the future.

Anti- Quorum sensing therapeutics
 Quorum sensing is a desirable target 
for biofilm suppression and removal. It was 
discovered that the naturally available carotenoid 
zeaxanthin targets the Las and Rhl system and 
inhibits biofilm.114 The plant flavonoid quercetin 
is well known for its pharmacological activities, 
which include lowering pyocyanin synthesis and 
preventing P. aeruginosa from forming biofilms.115 
P. aeruginosa periplasmic enzyme PvdQ acylase, 
another quorum-suppressing compound, has been 
shown to hydrolyze N-acyl homoserine lactone 
(AHL), reducing virulence and easing infections.116 
The fungal metabolite, terrein, derived from 
Aspergillus terreus, has been shown to inhibit both 
QS system and cyclic 3'5' GMP without impacting 
bacterial survival.117 Quenching enzymes, QsdA 
and AqdC isolated from Rhodococcus erythropolis 
decreased N-acylhomoserine lactone synthesis, 
inhibiting bioactive compounds required for 
biofilm formation. Ajoene, a sulfur rich QS 

targetting molecule derived from garlic that 
targets RsmY and RsmZ in P. aeruginosa.95 Similarly, 
baicalin flavonoid purified from the roots of 
Scutellaria baicalensis, repressed QS-regulatory 
genes, including lasI, lasR, rhlI, rhlR, pqsR and 
pqsA in P. aeruginosa and minimised the virulence 
phenotypes such as LasA protease, LasB elastase, 
pyocyanin, rhamnolipid, motilities and exotoxin 
A.97

Therapeutics against iron metabolism
 P. aeruginosa acquires extracellular iron 
via iron absorption mechanisms (siderophores). 
Therefore, iron analogues and chelators that target 
iron metabolism may be effective treatments for P. 
aeruginosa infections. Gallium, which resembles 
iron structurally, was used as an alternative 
to iron to obstruct iron uptake, obstruct iron-
dependent pathways, affect bacterial survival, 
and obstruct biofilm formation.118 Deferoxamine 
and deferasirox, two FDA-approved iron chelation 
compounds, are used with tobramycin to effectively 
break up existing biofilms.119

Fifth generation antibiotics
 Due to high resistance to conventional 
antibiotics, fifth-generation antibiotics are 
used singly or in combination, specifically 
against Pseudomonas species. Cephalosporin or 
tazobactam was effective against Gram-negative 
bacteria and being used as an antipseudomonal 
agent.120 A combination of ceftolozane-tazobactam 
was reported to be effective in the downregulation 
of ampC gene, against the adhesion of colonies to 
the surface and biofilm formation.121,122 Similarly, 
ureidopenicillin, a beta-lactamase inhibitor found 
to be effective against P. aeruginosa.121,123

Immunotherapeutics
 Monoclonal antibodies (mABs) targeting 
bacterial DNA binding proteins have been 
emerging as a promising therapeutic tool against P. 
aeruginosa in mouse models.124 KaloBios designed 
KB001-A, an anti-P. aeruginosa mAb against 
response to the Type III secretion system (T3SS), 
which is necessary for P. aeruginosa pathogenicity 
and was found to be safe and well-tolerated.8,125 
Many monoclonal antibodies including MEDI3902 
from AstraZeneca targeting Pseudomonas biofilms 
are in clinical trials.126
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Nanoparticles
 Nanoparticles have been employed 
for the penetration of antibiotics into biofilms. 
For instance, it has been demonstrated that 
clinical P. aeruginosa strains resistant to specific 
antibiotics are susceptible to the antibacterial 
action of silver nanoparticles.127 Without altering 
the development of planktonic cells, zinc ions 
and ZnO nanoparticles have been shown to 
prevent the formation of biofilms and also inhibit 
pyocyanin, pyochelin and hemolytic activity.100 
Methanolic silver nanoparticles showed 85.63% 
inhibition of Pseudomonas biofilm formation.99 
TTO (Tea of Tree oil) nanoparticles has potential 
antibiofilm activity against P. aeruginosa PAO1,128 
and D-galactose nanoparticles could inhibit lecA 
of Pseudomonas significantly.129 Additionally, 
polyphosphoester nanoparticles, silver acetate, 
and minocycl ine s ignif icantly  improved  
P. aeruginosa's susceptibility.130

CONCLUSION

 Diabetes foot ulcers can result in lower 
limb amputations and significantly negatively 
impact the socioeconomic and health of diabetic 
patients. Chronic DFU wounds are polymicrobial 
with varied organisms. Pseudomonas aeruginosa 
is the dominant pathogen present in medium and 
chronic diabetic foot ulcers. It is regarded as a 
highly harmful pathogen due to its ability to form 
multidrug resistance biofilms. The extraordinary 
capacity of P. aeruginosa to create biofilms is 
aided by a highly developed quorum-sensing 
cell communication system and the activation 
of antibiotic resistance pathways. Nowadays,  
several therapeutic strategies are developing to 
prevent resistance such as combination therapy 
by combining antibiotics of different classes, 
discovery of novel antibiotics such as ceftolozane-
tazobactam, ceftazidime-avibactam, along with 
designing of novel anti-microbial peptides could 
be highly promising against multidrug resistant 
Pseudomonas aeruginosa. Future research is 
needed to create more sophisticated methods 
that can provide high-throughput and precise 
treatment at an early stage of P. aeruginosa 
proliferation and biofilm formation.
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