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Abstract
Antimicrobials or antibiotics were the important revelations of the last century, however, it came along 
with a silent curse that people care less to talk about. Antimicrobial resistance (AMR) which emerged 
alongside antibiotics in the last century has been a significant concern for scientists and policymakers. 
Since their discovery, it has been noted that the widespread use of antibiotics is the primary cause of 
bacteria developing antimicrobial drug resistance.  Despite the recognition of this issue, it is challenging 
to curtail the widespread use of antibiotics because they are essential for treating various infections. 
Paradoxically, the necessity of using these drugs becomes an inadvertent advantage for bacteria to 
evolve resistance mechanisms. This dilemma creates a seeming stalemate in our battle against these tiny 
microorganisms.  Delaying action could have dire consequences, potentially leading to the emergence 
of stronger superbugs that pose a serious threat to the entire human population. The recent COVID-19 
pandemic serves as a stark reminder of the devastating impact a small microbe can have on global 
health. This paper delves into the mechanisms of antimicrobial resistance in bacteria, the evolution of 
superbugs and the innovative techniques employed by scientists to combat these challenges. Taking 
proactive steps is crucial to avoid a future where we are at the mercy of increasingly resilient microbes.
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INTRODUCTION

 Antibiotics were systematically thought to 
be the important discovery of the previous century. 
Their boundless use transformed healthcare after 
their debut and the names of scientists like Paul 
Ehrlich and Sir Alexander Fleming1 who introduced 
them to us are still discussed. Various antibiotics 
have effectively controlled infectious diseases that 
were once untreatable and fatal, thus preventing 
millions of deaths each year.2 However, due 
to the overuse and misuse of antibiotics, the 
effectiveness of these drugs is now threatened by 
the rise of antibiotic resistant bacteria. Fleming, 
in his days, had noted the insensitive use of these 
drugs might result in the development of bacterial 
strains which might become immune.3 This ability 
of microorganisms, such as bacteria, viruses 
and some parasites, to develop resistance to 
antimicrobial drugs has been termed antimicrobial 
resistance (AMR).4 This resistance means that 
the antimicrobial drugs, including antibiotics, 
antivirals and antiparasitic medications, are no 
longer as effective or entirely ineffective in killing 
or inhibiting the growth of these microorganisms. 
As a result, infections become more challenging 
to treat, leading to prolonged illnesses, increased 
healthcare costs and in some cases, higher 
mortality rates.5

 The World Health Organization (WHO) 
has recognized AMR as one of the ten major 
worldwide public health challenges.6 It is a 
significant global concern that requires coordinated 
efforts to combat its spread and ensure the 
continued effectiveness of these vital drugs. This  
has prompted researchers and pharmaceutical 
companies to intensify their efforts in drug research 
and development, with a focus on understanding 
resistance mechanisms and developing novel 
antibiotics and alternative treatment strategies. 
In this article, we have explored the various AMR 
mechanisms and discussed methods to prevent it.

Antimicrobials
 Antimicrobials are a diverse group of 
substances that are pivotal in the fight against 
infectious diseases.7 These compounds, including 
antibiotics, antivirals, antifungals and antiparasitic, 
work by either killing or inhibiting the growth 
of microorganisms such as bacteria, viruses, 
fungi and parasites.8 They play a crucial role 
in medicine, agriculture and veterinary care, 
combating infections in humans, animals and 
plants. Antimicrobials encompass a wide array 
of compounds produced through various means, 
including natural sources like bacteria, fungi 
and plants, as well as synthetic processes in 

Figure 1. Timeline of antibiotic resistance
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laboratories.9 Their mechanisms of action vary 
depending on the specific antimicrobial and the 
type of microorganism it targets. For example, 
bactericidal antimicrobials, such as penicillin, 
cephalosporins and vancomycin directly kill the 
bacteria. However, bacteriostatic antimicrobials 
on the other hand, such as chloramphenicol, 
tetracyclines and erythromycin, inhibit the growth 
of bacterial cells

AMR
 The initial indication of AMR became 
evident shortly following the identification of 
penicillin.10 In 1940, Abraham and Chain observed 
that a strain of E. coli had the capacity to render 
penicillin ineffective through the production 
of penicillinase.11 This early discovery laid the 
foundation for our understanding of resistance 
mechanisms. The timeline of antibiotic resistance 
development for different drugs are mentioned 
in Figure 1. When penicillin and sulphonamide 
were introduced in medical treatments during the 
late 30s and 40s of the 20th centuries, individuals 
believed that antibiotic use prevented every 
disease that is caused by the disease-causing 
agents. But the exploitation of these antibiotics has 
caused tremendous pressure in the development 
and improvement of AMR.12 Different bacteria 
started to develop resistance mechanism against 
the antibiotics and a few bacteria along with 
their mechanism of actions are mentioned in 
Table 1. The momentum for improving antibiotic 
resistance has been growing, especially as the 
use of antibiotics became more restricted after 
vancomycin was reserved for special cases, 
preventing resistance from developing. However, 
irregular antibiotic usage brought about the 
rise of methicillin-resistant Staphylococcus 
aureus (MRSA), which shows multi antimicrobial 
resistance. Consequently, vancomycin-resistant 
Enterococci (VRE) showed up in 1986 because of 
the far-reaching utilization of vancomycin, which 
was viewed as the antimicrobial after all other 
options had run out. AMR is primarily caused 
by the overuse and misuse of antimicrobial 
drugs. Over-prescription of antibiotics for viral 
infections, self-medication and over-the-counter 
sales of antibiotics contribute to the problem.13 
In agriculture, antibiotics are not only used 

to treat sick animals but are also commonly 
added to the feed and drinking water of healthy 
animals to prevent illness.14 There is substantial 
evidence indicating that the use of antibiotics in  
animals s ignif icantly contributes to the 
development of AMR in human pathogens. 
Additionally, the slow development of new 
antimicrobial drugs, coupled with poor infection 
control practices in healthcare settings and 
communities, allows drug resistant pathogens 
to thrive and spread.15 These factors collectively 
contribute to the emergence and proliferation of 
AMR, making it a pressing global health concern. 
To battle these hazardous issues, it is essential for 
the continual efforts to develop new antimicrobial 
agents. Some recent antibiotics have been proven 
to be powerful upon MRSA and VRE, but these 
dangerous microorganisms will eventually develop 
resistance to these compounds.

AMR mechanisms
 The resistance to antimicrobials is either 
inherited or intrinsic. For instance, in the natural 
resistance mechanism caused by Pseudomonas 
aeruginosa, the lower membrane permeability 
would be the probable reason for its intrinsic 
protection from numerous antimicrobials. 
Inherited resistance happens by securing a 
transposon or a plasmid that carries the genes 
that encode resistance mechanisms from other 
organisms, or via the process of chromosomal 
transformation.
 The significant mechanisms of actions 
involved in the development of microbial resistance 
are:
• Reduction in drug binding affinity by altering 

drug targets.
• Modification of antibiotics causing inactivation 

of drugs.
• Increasing efflux or restricting uptake.
• Genetic mutations. 

Modification of drug targets
 The modification of drug targets is a 
crucial mechanism that microorganisms employ 
to develop AMR. This mechanism involves 
altering certain segments or structures in the 
microorganism that are the targets of the 
antimicrobial agents. For example, the change in 
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the number and structure of penicillin-binding 
proteins (PBPs) is a major component of protection 
that is utilized by gram-negative microbes.16 
 PBPs are enzymes found in bacterial 
cell walls that play a key role in the synthesis and 
maintenance of the cell wall structure. Antibiotics 
like penicillin exert their antimicrobial effects 
by binding to these PBPs, thereby inhibiting 
cell wall synthesis and leading to bacterial cell 
death. However, when there is an increase in the 
production of PBPs or alterations in their structure, 
the binding of penicillin to these proteins may 
be hindered, reducing the drug's effectiveness.9 
Another example of drug target modification seen 
in gram-negative bacteria, where resistance to 
vancomycin occurs due to changes in the structure 
of peptidoglycan precursors.17 Other mechanism 
that have been reported include alterations in the 
surface charge of the bacterial cell membrane, 
such as a shift towards a positive charge which 
can interfere with the binding of calcium ions, 
thereby reducing the efficacy of certain drugs such 
as daptomycin.18

Inactivation of drugs
 The two fundamental manners by which 
microorganisms stop the activity of drugs are by 
either transferring a chemical group to the drug 

or by directly degrading the drug.19 One of the 
most well-known examples of drug inactivation 
is the production of β-lactamase enzymes by 
many bacteria. β-lactamases are an exceptionally 
enormous category of drug hydrolysing enzymes. 
These enzymes target and inactivate β-lactam 
antibiotics, which include widely used drugs like 
penicillin and cephalosporins. β-lactam antibiotics 
work by interfering with the synthesis of the 
bacterial cell wall, ultimately causing the cell to 
burst. However, β-lactamase enzymes can break 
the β-lactam ring, a key structural component of 
these antibiotics, rendering them inactive.20 As 
a result, the antibiotic can no longer disrupt the 
cell wall synthesis and the bacterium remains 
unharmed. 
 Tetracycline is another drug that can 
be easily hydrolysed and inactivated by the tetX 
enzyme which modifies the tetracycline molecule 
by adding a functional group to specific sites 
on the tetracycline structure. This change in 
structure interferes with the tetracycline’s ability 
to bind to the ribosome effectively. As tetracycline 
antibiotics depend on their specific interaction 
with the ribosomes to inhibit protein synthesis, 
the altered tetracycline molecule can no longer 
bind to the ribosome with the same affinity or 
effectiveness.21 As a result, it cannot disrupt the 

Figure 2.  Different families of efflux pumps found in bacteria
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translation process and bacterial protein synthesis 
proceeds unimpeded.
 The inactivation of certain drugs is brought 
about by a group of transferases responsible for 
transferring chemical groups such as phosphoryl, 
adenyl and acetyl to these drugs.9 The most utilized 
mechanism is acetylation, which shows its effect 
against drugs like streptogramins, aminoglycosides 
and fluoroquinolones.

Active efflux
 Many microorganisms have evolved with 
an amazing mechanism to counter increasing 
drug concentration levels in their cells.22 They 
simply efflux the antibacterial agents outside the 
cells through certain pumps in their cell surface 
known as efflux pumps.23 Via these molecular 
pumps, they can actively transport a wide variety 
of antimicrobial compounds and toxins out of the 
cells.24 Efflux pumps can exhibit specificity towards 
a single substrate or have the ability to transport 
a variety of structurally dissimilar compounds. 
This includes antibiotics from various classes, and 
these pumps may be linked to the phenomenon 
of multiple drug resistance (MDR).25

 The efflux pumps come under five 
families which are:
• ATP-Binding Cassette (ABC) superfamily 

• Multidrug and Toxic Compound Extrusion 
(MATE) superfamily

• Small Multidrug Resistance (SMR) superfamily 
• Major Facilitator Superfamily (MFS) 
• Resistance Nodulation and Cell Division (RND) 

superfamily 
 One of the major differences between 
the different families is the varying energy sources 
and assembly of the components as outlined in 
Figure 2. The ABC family relies on ATP hydrolysis 
for energy, as opposed to other transporters like 
MATE, MFS, RND and SMR superfamilies, which 
harness the proton-motive force from H+ or the 
electrochemical gradient of Na+ for energy to 
expel various compounds.26 Another difference 
as seen in the RND family is the tripartite complex 
comprising of the outer-membrane canal protein 
(OMP), an inner-membrane transporter and a 
membrane fusion protein (MFP) that bridges the 
OMP and inner-membrane transporter.26

 The genes are chromosomally encoded 
and some of these are constitutively expressed 
while others are overexpressed under certain 
conditions like when the availability of a substrate 
is reasonable.27

 Genes associated with efflux pumps 
can be obtained via intrinsic or acquired means. 
Certain bacteria possess these genes on their 

Figure 3. Types of antibiotic resistance mechanisms developed by bacteria
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chromosomes, providing an inherent survival 
mechanism in challenging environments.28 In 
contrast, other bacteria can procure these genes 
through diverse mechanisms such as mutations 
within local repressor genes, activation of a 
regulon controlled by a global transcriptional 
regulator, or the presence of efflux pump genes 
on plasmids.28 For example, the RND family 
efflux pumps play a crucial role in the intrinsic 
antibiotic resistance of gram-negative bacteria by 
actively expelling a diverse array of antibiotics and 
antimicrobials.29

 In gram-positive bacteria, the efflux 
pumps provide intrinsic resistance as they are 
encoded on the chromosome.23 Chromosomal 
encoding is responsible for MDR efflux pumps, 
exemplified by NorA, NorB, MepA and MdeA 
in S. aureus.30 These pumps confer inherent 
antibiotic resistance in bacteria across a diverse 
spectrum. Conversely, certain efflux pumps in 
gram-positive are also carried around on plasmids 
or transposons, like QacA/B in S. aureus or MefA 
and MefB in Streptococcus spp., respectively.30

Genetic mutations
 In  speci f ic  spec ies ,  mutat ion is  
the primary, or sole, reason for AMR. Perhaps 
the best example would be Mycobacterium 
tuberculosis, where mutation is the primary 
cause of resistance to all clinical drugs in this 
bacterium. Combination treatment is required 
to treat tuberculosis which is a pathogen that 
causes prolonged sickness in humans.31 The risk 
caused by the mutation at the point of infection 
in microorganisms cannot be eliminated by the 
combination treatment which only diminishes 
the impact.
 Alteration in their genome will prevent 
the ability of antibiotics to act on them thus 
creating a superbug or super bacteria. These 
naturally genetically modified bacteria produce 
resistance against the exploited drugs which 
then spread among their population leading 
to the entire species becoming resistant to 
certain drugs.19 Moreover, in some cases, after 
a bacterium dies, they may leave their genetic 
material outside which in turn might be picked 

Figure 4. Trends in solid lipid nanoparticles research
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up by bacteria of a different species that might 
incorporate the usable resistant genetic material 
inside it resulting in producing new resistance.

Superbugs
 Superbugs signify strains of MDR bacteria 
that are impervious to a large portion of the 
antibiotics and different drugs usually used to 
treat the disease they cause.32 The expression 
“superbug” was coined by the media and 
essentially refers to bacteria that has developed 
resistance to multiple drugs that were once 
effective against the infection it caused.33 Different 
methods of resistance mechanism developed 
by bacteria are mentioned in Figure 3. A couple 
of instances of superbugs include MRSA, VRE,  
multidrug-resistant Pseudomonas aeruginosa and 
multidrug-resistant Acinetobacter.34 It is crucial to 
understand that any bacteria have the potential 
to evolve into a superbug and develop resistance 
to nearly any drug if those drugs are overused 
or misused. This misuse can have harmful 
consequences for crops, humans and animals. 
Thus leading to a situation where a multi-step 

approach may be the only effective approach to 
further prevent the spread and infection of these 
superbugs.35

Development of superbugs 
 The development of superbugs is 
primarily due to the misuse and overuse of 
antibiotics, which leads to the emergence of 
drug resistant strains.36 When antibiotics are 
overused or misused, the microorganisms that 
cause the infections tend to develop resistance 
to multiple antibiotics via the various mechanisms 
that have been discussed earlier in this article. As 
the microorganisms evolve to survive the drugs 
that were previously lethal, they create antibiotic 
resistant strains and commonly used antibiotics 
become ineffective over time.36

 The emergence and spread of superbugs 
result from a combination of factors such as the 
overuse and misuse of antibiotics, inappropriate 
antibiotic prescribing practices and incomplete 
treatment courses.37 Nowadays the most common 
form of antibiotic misuse is consumption of 

Table 2. Antibiotic Efflux Pump Families, their Substrates and Inhibitors

Efflux Pump Family Substrates  Efflux Pump Ref.
  Inhibitors

ATP-Binding Cassette (ABC) Tetracyclines Reserpine 66, 67
superfamily  Fluoroquinolones  
 Macrolides  
 Rifampicin  
 Chloramphenicol  
Multidrug and Toxic Compound Fluoroquinolones Verapamil 67, 68
 Extrusion (MATE) superfamily Tigecycline  
 Pentamidine
Small Multidrug Resistance Tetracyclines  66, 67
 (SMR) superfamily  Erythromycin  
 Sulfadiazine  
Major Facilitator Superfamily Tetracyclines Phenothiazines 66, 67
 (MFS)  Fluoroquinolones Thioridazines 
 Erythromycin Chalcones 
 Rifampicin Piperine 
 Chloramphenicol Flavonoid's 
  Quercetin 
Resistance Nodulation and Cell Tetracyclines Phenyl-arginine-β-  66, 67
Division (RND) superfamily Fluoroquinolones napthylamide (PaβN) 
 Erythromycin Hydantoins 
 Rifampicin
 β-Lactams
 Chloramphenico
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antibiotics without consulting physicians. 
Furthermore, there are instances where healthcare 
professionals prescribe antibiotics unnecessarily. 
This may result from diagnostic uncertainty, 
patient requests, or precautionary practices. 
In cases where antibiotics are appropriately 
prescribed, some patients may not complete the 
prescribed course.38 Incomplete courses can lead 
to the survival of bacteria that develop resistance 
to the antibiotic. The reason for this lies in the fact 
that the most susceptible bacteria are eliminated 
first, leaving behind those that may possess 
greater resistance. Additionally, improper and 
excessive use of antimicrobials in livestock, fish 
farming and agriculture leads to the development 
of resistant bacteria, which causes major health 
risks.39,40

Combating AMR
 AMR may be a complicated issue  
with various causative factors. It’s the major reason 
behind health issues in the community, affecting 
people directly or indirectly. Given the necessity 
for widespread antibiotic use to combat AMR, 
the immediate development of new technology 
is imperative. 
 The overuse of certain antibiotics may 
result in the production of even more powerful 
superbugs which might ultimately become 
resistant to all known drugs.31 Hence new 
techniques to combat AMR is needed and to our 
surprise, many alternative techniques to combat 
AMRs have been developed by scientist all around 
the world41 to fight against the globally spreading 
AMR.

Targeting outer membrane
 Bacteria have evolved various strategies 
to avoid contact with antibiotics, and one crucial 
mechanism involves preventing the entry of these 
drugs.9 Antibiotics typically exert their effects after 
entering the cell membrane, but bacteria have 
developed defenses to impede this process.41 The 
intricate structure of bacterial cell walls, comprising 
compounds like porins and lipopolysaccharides, 
serves as a barrier, hindering the entry of certain 
antibiotics. These compounds act as gatekeepers, 
preventing the intrusion of antibiotics.42 Few 
microbes undergo macromolecule mutations 
outside the cell membranes to prevent the entry 

of some antibiotics. However, certain antibiotics 
have been devised with means to overcome these 
barriers and enter the organisms.

Hydrophobic compounds
 Certain compounds such as macrolides 
and rifampicin possess hydrophobic characteristics 
that allows the compounds to navigate through 
the cell membrane efficiently and easily cross the 
lipid bilayer.

Hydrophilic molecules
 A nt i b i o t i c s  s u c h  a s  β - l a c ta m s , 
fluoroquinolones and phenicol antibiotics, are 
hydrophilic in nature. They leverage transport 
mechanisms by interacting with specific porins, 
allowing them to diffuse through the cell 
membrane and overcome the protective barriers. 

Targeting β – Lactamases
 Synthesis of enzymes that can counter 
the antibiotics administered is one of the major 
defense mechanisms employed by bacteria.1 
β-lactam antibiotics which possess natural 
bactericidal properties were initially developed 
and widely used. However, the extensive use of 
β-lactam antibiotics 9 led to the rapid development 
of resistant strains in gram-positive bacteria. 
The primary mechanism of β-lactam antibiotics 
involves the inactivation of transpeptidases, 
disrupting the final step in membrane biogenesis.31 
Subsequently, bacteria developed mechanisms 
to evade β-lactam treatment such as reduced 
expression of transport proteins, increase of 
efflux pumps and expression of β-lactamases.43 
As β-lactamases are enzymes that hydrolyse and 
disrupt β-lactams, this results in the inactivation 
of antibiotics that have the functional β-lactam 
group.31

 Several strategies can be employed 
to address this challenge. Firstly, developing 
inhibitors specifically designed to target and 
neutralize β-lactamases can help in preventing 
the degradation of β-lactam antibiotics. 
Additionally, a promising strategy is the use 
of combination therapy, wherein β-lactam 
antibiotics are administered alongside these newly 
developed inhibitors, enhancing the antibiotics’ 
effectiveness.44 Structural modifications of 
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antibiotics represent another avenue, focusing 
on engineering changes that make these drugs 
less susceptible to β-lactamase activity. An 
example would be a β-lactamase-activated 
antibacterial prodrug where the prodrug only 
exhibits bactericidal properties upon activation 
by β-lactamase.45 By employing these methods, 
antibiotic resistance can be leveraged to specifically 
target bacteria that produce β-lactamase.

Targeting efflux pumps
 The development of efflux pump inhibitors 
is one of the widely used strategies to combat 
resistance through efflux.46 These inhibitors are 
tiny molecules that attach themselves to the 
pumps and block the expulsion of the antibiotic 
compounds from the cell.27 An overview of 
several antibiotic efflux pump families, the specific 
antibodies associated with the efflux pumps and 
their inhibitors are mentioned in Table 2. As 
these small molecules do not possess intrinsic 
bactericidal activities, they have been tested for 
synergistic effects at various concentrations in 
combination with antibiotics.22

 Many ways have been explored for 
inhibiting efflux pumps, including47:
• Disrupting channel protein assembly.
• Interfering with efflux pump gene expression.
• Preventing recognition by adding functional 

chains.
• Developing small molecules as substrates to 

block activity of efflux pumps.
 Therefore, inhibition of efflux may result 
in several positive outcomes, including47:
• Maintaining drug concentrat ions at 

therapeutic doses.
• Reducing multi-drug resistance.
• Reducing treatment periods.
• Enhancing the activity of antibiotics 

susceptible to efflux.

Novel approaches to combat AMR
 Antibiotic resistance poses a significant 
threat to global human health.8 Imperative 
measures are needed to prevent the emergence 
and spread of multi-drug resistance organisms 
which could have far-reaching consequences.41 
Novel methods to identify, validate and develop 
new techniques are necessary to overcome 
this serious issue.16 The latest breakthrough in 

addressing AMR is using genetic engineering tools. 
These tools, such as CRISPR/Cas9 technology and 
nanotechnology, can be used to directly target 
the antibiotic resistance genes of microorganisms. 
Figure 4 illustrates various delivery mechanisms 
for these techniques, which are currently at the 
forefront of efforts to combat antibiotic resistance. 

CRISPR/Cas9 to combat AMR
 CRISPR-Cas systems are known as 
bacterial adaptive systems and are analogues of 
the immune system.48 The CRISPR/Cas9 system has 
been employed in many fields of study, ranging 
from genome editing for agricultural purposes to 
disease eradication. Originally a natural defense 
mechanism employed by the bacteria to fight 
invading phage viruses, scientists have harnessed 
and replicated these techniques to develop a 
technology aimed at preventing bacterial impact 
on humans.49 Bacterial genes contain CRISPR/
Cas arrays, which consist of repeating sequences 
of DNA, known as repeats which are separated 
by unique sequences of equal sizes known as 
spacers.50 In the context of combating AMR, 
CRISPR/Cas9 technique is specifically programmed 
to target the DNA at specific sites, consequently 
cleaving AMR genes resulting in the disruption of 
the bacterial cells’ AMR mechanism.51

Nanoparticles as a tool to combat AMR
 Nanotechnology is an emerging field 
that utilizes nanoparticles to perform multiple 
or specific functions.52 These nanoparticles can 
be customized to perform specific tasks. In the 
context of AMR, utilizing nanoparticles offers 
a promising approach and unique advantages 
to address challenges faced by traditional 
antimicrobials.53 Nanomaterials have the 
capability to interfere with bacterial membranes, 
target intracellular components, and facilitate 
the delivery of antimicrobial agents.54 This 
results in improved therapeutic effectiveness 
against stubborn MDR infections.55 The use of 
nanotechnology alongside CRISPR/Cas9 holds 
promise for advancing treatments against MDR 
bacterial infections.56 As mentioned earlier, 
CRISPR/Cas9, known for its precise targeting, can 
disrupt drug resistance genes used by microbes 
for infection or directly eliminate pathogens.57 
However, despite its efficacy, challenges in  
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in-vivo delivery efficiency have limited its broader 
application. Nanotechnology provides a solution 
by enhancing the effectiveness and safety of 
CRISPR/Cas9 components through specialized 
nanoparticle delivery systems, addressing these 
delivery shortcomings.58

CONCLUSION

 AMR poses a severe global threat that 
could lead to a catastrophe if not promptly 
addressed. The most effective strategy against 
disease caused by bacterial pathogens is not by 
developing antibiotics to eliminate the pathogens 
but also to employ necessary measures to control 
the use of antibiotics. It is crucial for individuals 
worldwide to contribute to the fight against AMR 
by preventing the misuse of antibiotics in human 
and animal treatment. Since this cannot be 
accomplished overnight, this article offers several 
unique and successful approaches to combat MDR 
bacteria. Along with that, this paper has covered 
some important topics, such as the mechanism of 
antimicrobial drug resistance and the development 
of superbugs. While the development of new 
techniques to fight against AMR may incur 
significant costs that may be prohibitive for 
ordinary individuals, the emphasis should be 
on regulating antibiotic usage. Addressing the 
crisis of AMR involves raising public awareness 
on antibiotic misuse and overuse. Accessible 
diagnostic tools play a crucial role in ensuring that 
the proper antibiotics are prescribed to the right 
patient at the correct time, in regulated dosages 
for a particular time frame until their immune 
system effectively responds to the infection. 
Implementing antibiotic stewardship programs 
and regulatory measures are essential to control 
antibiotic use in both medical and agricultural 
settings. These programs can aid in ensuring that 
there is no room for bacteria to develop resistance 
mechanisms, ultimately preventing a widespread 
crisis.
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