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Abstract
Panchagavya has traditionally been used in Indian Ayurvedic practices because of its pro-agricultural 
and medicinal properties. This study presents the draft genome of a new Brevibacillus brevis S1-3 
strain isolated from the fermented product Panchagavya. Through whole-genome sequencing, we 
determined that the genome of B. brevis S1-3 was 6,348,716 base pairs with a GC content of 54.3%. 
Genome assembly revealed the presence of 6107 protein-coding genes, 186 tRNA genes, and 13 rRNA 
genes. Genome annotation and analysis identified the genes involved in metabolism and other cellular 
processes. We also predicted the presence of several gene clusters associated with plant growth 
promotion, including indole acetic acid (IAA), gibberellic acid, ammonia, and nitrogen. Our study also 
revealed the genes responsible for the production of secondary metabolites that displayed a significant 
correlation with antimicrobial activity. Our results provide new insights into the genomic basis of the 
plant growth-promoting abilities of B. brevis and pave the way for further research in this field.
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INTRODUCTION

 Brevibacillus brevis is a gram-positive, 
motile, rod-shaped, aerobic spore-forming 
bacterium known to be present in various 
environmental conditions, including soil and the 
animal guts.1,2 This bacterium has been shown to 
possess antimicrobial activity against soil-borne 
pathogens such as Phytophthora nicotianae 
and Ralstonia solanacearum,3,4 making it a 
potential control agent against plant pathogens. 
Additionally, B. brevis produces a variety of 
secondary metabolites, such as tyrocidine, 
grastin, and adenine, which are responsible for 
its antimicrobial activity.5-7 Brevibacillus brevis 
has also been studied to identify its role and 
interaction with plants and has been found to 
confer disease resistance against fungal agents in 
plants like tomatoes,8 grapes,9 pigeon pea,10 tea,11 
etc. Furthermore, B. brevis has been identified as a 
plant-growth-promoting rhizobacterium (PGPR),12-

14 which can act as a biofertilizer, increasing crop 
yield and soil fertility, while reducing the need for 
chemical fertilizers.15

 Several studies have reported draft 
genome sequences of several strains of B. brevis, 
including NBRC 100599,16 B. brevis X23,14 and 
B. brevis strain FJAT-0809-GLX.13 These genome 
sequences typically range in size from 6Mb and 
contain more than 5600 protein-coding genes. 
However, these previously published genomes are 
yet to undergo functional annotation to identify 
the genes responsible for the biosynthesis of 
secondary metabolites or plant growth regulators.
In the field of plant-microbe interactions, biocontrol 
is a dynamic strategy that uses beneficial microbes 
to control plant pathogens. The biocontrol arsenal 
includes systemic resistance, antimicrobial 
compounds, competitive exclusion, and nutrient 
enhancement.17 The success of biocontrol depends 
on factors such as compatibility, adaptability, 
persistence, and specificity, which collectively 
determine its effectiveness. Integrating these 
methods with other pest management approaches 
is essential for sustainable agriculture.18 However, 
achieving a delicate balance between inducing 
resistance without harmful effects and addressing 
practical application challenges remains a complex 
task.

Recent advancements highlight the crucial 
roles of plant-associated microorganisms in 
maintaining plant health and ecological balance. 
Utilizing beneficial microbes is a promising 
approach for disease mitigation and improved 
crop yields.19 Genomic and proteomic analyses 
of microbial genomes provide insights into the 
molecular intricacies of these interactions, which 
are critical for refining control measures. While 
previous research focused on the rhizosphere, the 
phyllosphere, which includes aboveground plant 
parts, is less explored.20

 B. brevis is recognized as a noteworthy 
inhabitant of the rhizosphere, showcasing 
remarkable biocontrol capabilities through its 
interactions with plants. In this study, we isolated 
a new strain of Brevibacillus brevis S1-3 from 
Panchagavya, a fermented product traditionally 
used in Indian Ayurvedic practices that is composed 
of five cow products, including clarified butter, 
curd, milk, urine, and fermenting dung.21,22 
Through genome sequencing and functional 
annotation, we characterized the genome of 
B. brevis S1-3, providing new insights into the 
genomic basis of the biosynthesis of secondary 
metabolites and plant growth regulators in this 
strain. 

MATERIALS AND METHODS

Isolation and Molecular Identification
 The Panchagavya used in this study 
were obtained from a commercial market in 
Chennai, India. After serial dilutions, the bacterial 
species present in Panchagavya were grown in 
Luria-Bertani medium at 37°C. Distinct colonies 
were then selected and cultured separately 
before storage at -20°C. Genomic DNA was 
extracted from the selected bacteria using the 
QIAamp DNA Microbiome Kit (Qiagen India Pvt. 
Ltd., India), according to the manufacturer’s 
instruct ions .  The qual i ty  and quant i ty  
of the extracted bacterial  genomic DNA  
were analyzed using agarose gel electrophoresis  
and Nanodrop (Tecan-Inf inite 200 PRO,  
S w i t z e r l a n d ) .  P C R  w a s  p e r f o r m e d 
using the 16s rDNA universal primers 27F 
(5′-AGAGTTTGATCCTGGCTCAG-3′) and 1492R 
(5′-TACGGTTACCTTGTTACGACTT-3′).23,24 The 
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amplified PCR product was purified (using 
a Qiagen PCR product purification kit) and 
sequenced using the Sanger DNA sequencing 
method (Applied Biosystems Genetic Analyzer, 
Saint Aubin, France). The resulting 16s rDNA 
sequences were compared to those in the NCBI 
database using the Basic Local Alignment Search 
Tool (BLAST). The bacterial species were identified 
based on sequence similarity, and a phylogenetic 
tree was constructed using the MEGAX software. 
Evolutionary distances were inferred using the 
neighbour-joining method.25-27 

Genome Sequencing and Annotation
 Paired-end sequencing libraries were 
prepared using a Nextera XT DNA Library 
Preparation Kit (Illumina). The final library was 
analyzed using a Bioanalyzer 2100 (Agilent 
Technologies, USA) with a high-sensitivity DNA 
kit according to the manufacturer’s instructions. 
The paired-end Illumina library was sequenced 
using 2 x 150 bp chemistry on a NextSeq-500 
sequencer. Quality control of the raw reads was 
performed using FastQC v.0.11.5,28-30 and the low-
quality reads were filtered. The Cutadapt tool was 

used to remove adapter regions from sequencing 
reads. High-quality reads obtained from Illumina 
NextSeq-500 were assembled into scaffolds using 
SPAdes (version 3.7.1) with default parameters.31-33 
The quality of the assembled genome was 
analyzed using QUAST.
 Genome assembly was annotated 
using Prokka v.2.1.1 and Rapid Annotation 
using Subsystems Technology (RAST) server 
v.2.0. Secondary metabolite gene clusters were 
identified using the antiSMASH version 5. The 
various biological features of the annotated 
genome were analyzed using RAST. Antimicrobial 
resistance genes and other protein functions were 
identified using PATRIC genome analysis server.34-36

RESULTS AND DISCUSSION

Isolation of culture and phylogenetic analysis
 We isolated various bacterial strains and 
evaluated their antimicrobial activity. Antibacterial 
activity was examined using broth microdilution 
assays against Streptococcus aureus (NCBI_
CP00253), E. coli (NCBI_U00096), and Vibrio 
cholerae (NCBI_CP043554). One of the bacterial 

Figure 1. Phylogenetic analysis of 16S rDNA sequence of Brevibacillus brevis S1-3 strain using neighbor-joining 
method. Pseudomonas aeruginosa was used as an outgroup
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Figure 2. The chromosome organization of Brevibacillus brevis S1-3, a plant growth-promoting bacteria isolated 
from Panchagavya. Circularized DNA plotter diagram of the chromosome of B. brevis, oriented from the origin; 
the outer light blue circle designates the genome base positions, and the outer blue circles depict predicted 5800 
CDSs on both forward and reverse strands. The purple and green combination circle states important chromosomal 
core structures with DNA elements like tRNA, GC skew+, GC skew-, and rRNA contig. The inner black circle denotes 
GC content.

isolates that exhibited antimicrobial activity was 
selected for this study.
 We isolated several bacterial strains from 
Panchagavya and assessed their antimicrobial 
potential. The antibacterial activity of these strains 
was evaluated using broth microdilution assays 
against three target pathogens: Streptococcus 
aureus, E. coli, and Vibrio cholerae (data not 
shown). One strain demonstrated notable 
antimicrobial activity among the bacterial isolates 
tested, prompting its selection for further 
investigation. The selected bacterial isolate was 
identified by 16s rDNA sequencing; and showed 
high similarity to Brevibacillus brevis (NR_041524). 
The 16s rDNA gene sequence of Brevibacillus 
brevis S1-3 was used to construct a phylogenetic 
tree (Figure 1), which revealed that the isolate 

was closely related to B. brevis NBRC and B. 
choshinensis with 99.2% and 98.38% sequence 
similarity, respectively. Other closely related 
species included B. agri and B. agri DSM 6348T, 
with 97.5% and 97.3% sequence similarity, 
respectively. The bacterial isolate identified in 
this study was named Brevibacillus brevis S1-3. 
The efficiency of Brevibacillus brevis as a plant 
growth-promoting rhizobacterium (PGPR) has 
been determined through studies evaluating its 
application in fostering plant growth.2 Through the 
examination of several plant growth-promoting 
(PGP) features, such as ammonia synthesis, and 
the generation of phytohormones, such as indole-
3-acetic acid (IAA), Brevibacillus brevis’ efficiency 
in promoting plant growth, evaluations of seed 
germination, and several plant growth metrics 
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have also been made.37 Bacillus brevis has been 
found to provide a multi-pronged defense against 
fungal and microbial pathogens by means of 
extracellular secretion of gramicidin S, gramicidin 
A, and a biosurfactant, thereby functioning as a 
biological control agent and aiding plant growth, 
apart from the production of PGPs.38

Whole Genome Sequencing of B. brevis S1-3
 Genome sequencing of B. brevis S1-3 
was performed using the Illumina NextSeq-500 
platform. A total of 1,602,833 paired-end reads 
of 101bp were generated, with an average GC 
content of 54.3% (Table 1). These reads were 
assembled using SPAdes software, resulting in a 
draft genome of 5,845,263 bp in size, comprising 
187 contigs (N50 - 88,031 bp) and 20 scaffolds 
(N50 - 678,417 bp). The genome contained 
6,107 protein-coding sequences (CDS), 186 tRNA 
genes, and 13 rRNA operons (16S-23S-5S rRNA)  
(Figure 2). Genome annotation was performed 
using the Prokka and RAST servers, which revealed 
that out of the total of 2,616 proteins, 2,492 were 
annotated as ‘hypothetical’ while the remaining 
proteins had non-hypothetical functions. The 
annotation included 5,259 proteins with functional 
assignments, including 1,592 proteins with Enzyme 
Commission numbers, 1,355 with Gene Ontology 
(GO) assignments, and 1,201 proteins mapped 
to KEGG pathways. The quality of the genome 
assembly was evaluated using QUAST and showed 
that the genome assembly of B. brevis S1-3 was 
of high quality.

Genome annotation
 Genome annotation of B. brevis S1-3 
assigned many genes to cellular processes 

related to metabolism, such as membrane 
transport, dormancy and sporulation, cellular 
signalling and regulation, cell wall synthesis, and 
capsule formation. Additionally, many genes 
were correlated with biosynthesis of a diverse 
group of macromolecules, such as amino acids, 
carbohydrates, cofactors, vitamins, prosthetic 
groups, and pigments (Table 2). A similar study 
conducted on Brevibacillus brevis LABIM17 proved 
its antimicrobial property against plant pathogens 
by brevis through the production of octapeptin 
and, auranticin.39

Table 1. General genome features of Brevibacilus brevis 
S1-3 strain plant growth promoting bacteria isolated 
from Panchagavya 

Features S1-3 chromosome

Genome size 6,348,716
G + C (%) 55.2
Predicted CDS 5800
rRNAs 13
tRNAs 186

G+C (%): guanine and cytosine content; CDS: protein-coding 
genes; rRNAs: ribosomal RNA; tRNAs: transfer RNA

Table 2. Annotation of genes involved in metabolism 
and other cellular processes of Brevibacillus brevis 
S1-3 plant growth-promoting bacteria isolated from 
Panchagavya

Genes Compounds No. of 
function   genes

Genes Fatty acids, lipids and 215
related to isoprenoids 
metabolism Amino acids and derivatives 625
 Sulphur 57
 Carbohydrates 560
 Cofactors, vitamins,  381
 prosthetic groups and 
 pigments
 Aromatic compounds 45
 DNA 140
 Phosphorous 85
 Iron 29
 Secondary metabolism 8
 Nitrogen 16
 Nucleosides and nucleotides 163
 Potassium 13
 RNA 207
Genes related Cell division and cellular cycle 56
to cellular Dormancy and sporulation 141
processes Cellular wall and capsule 145
 formation
 Photosynthesis 0
 Miscellaneous 67
 Motility and chemotaxis 118
 Regulation and cell signalling 115
 Phages, prophages, 14
 transposable elements 
 and plasmids
 Respiration 109
 Response to stress 124
 Membrane transport 226
 Virulence, disease and 128
 defence
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Identification of genes involved in plant growth 
promotion and secondary metabolite biosynthesis
 B. brevis also exhibits PGP traits at high 
temperatures, making it a valuable inoculant for 
cotton crops. Previous studies have reported that 
B. brevis enhances plant growth by increasing the 
expression of plant growth promoters such as IAA, 
ammonia, siderophores, cytokinins, and GA3.2,40,41 
Analysis of B. brevis S1-3 revealed that the genome 
contains many genes involved in the biosynthesis 
of plant growth promoters (PGP) (Table 3). The 
presence of five structural genes, trpE, trpD, trpC, 
trpB, and trpA in B. brevis S1-3 predicted the indole 
acetic acid production through the tryptophan 
pathway.42 The amoA and amoCAB code ammonia 
monooxygenase, which is essential for ammonia 
production. nifD, nifK, and nifH are responsible 
for metabolism involved in nitrogen fixation. 
entA, entB, and entC encode 2,3-dihydro-2,3-
dihydroxybenzoate synthetase, which is essential 
for siderophore production.43 Cytokinin production 
was predicted based on the presence of Tzs genes, 

which encode cytochrome P450 monooxygenase, 
the key enzyme for cytokinin production.44 ggs1 
and ggs2 initiate the GGDP pathway for primary 
metabolism of gibberellic acid.45 The presence of 
these genes in B. brevis S1-3 suggests that this 
strain has potential applications in agriculture as 
a biofertilizer and for controlling plant pathogens. 
 The gene clusters involved in the 
biosynthesis of secondary metabolites in B. 
brevis S1-3 were identified using the antiSMASH 
5.1.2 software (Table 4). This analysis revealed 
97 genes associated with antibiotic resistance, 
47 genes related to drug targets, 79 transporter 
genes, and 96 virulence factor genes. The genes 
were classified based on their antimicrobial 
resistance mechanisms, as determined by various 
antimicrobial resistance databases.46-49 This study 
provides a comprehensive understanding of the 
genomic basis for the plant growth-promoting and 
secondary metabolite biosynthetic abilities of B. 
brevis S1-3 and, provides a foundation for future 
research in this area.

Table 4. Antimicrobial Resistance Genes from Brevibacillus brevis S1-3 

AMR Mechanism Genes

Antibiotic inactivation enzyme ANT(6)-I, FosB, PDC family
Antibiotic target in susceptible species Alr, Ddl, dxr, EF-G, EF-Tu, folA, Dfr, folP, gyrA, gyrB, inhA, fabI, 
 Iso-tRNA, kasA, MurA, rho, rpoB, rpoC, S10p, S12p
Antibiotic target modifying enzyme Cfr
Efflux pump conferring antibiotic resistance EmrAB-OMF, EmrAB-TolC, FexA family, MdtABC-OMF,
 MdtABC-TolC, MexAB-OprM, MexCD-OprJ, MexCD-OprJ system, 
 MexEF-OprN, MexHI-OpmD, MexHI-OpmD system,
 MexJK-OprM/OpmH, MexVW-OprM, MexXY-OMP, YkkCD
Gene conferring resistance via absence gidB
Protein altering cell wall charge conferring GdpD, PgsA
antibiotic resistance
Protein modulating permeability to antibiotic OccD4/OpdT, OccD6/OprQ, OccK8/OprE, OprD family
Regulator modulating expression of antibiotic LiaF, LiaR, LiaS
resistance genes

Table 3. Plant growth promotor (PGP) gene cluster identified in B. brevis S1-3 strain

Plant growth promotor Genes

IAA (Indole Acetic Acid) Iaam, Iac, IaaH, IaaL, trpE(G), ipdC
Ammonia and Nitrogen amoA, amoCAB, nifD, nifK, nifH
Siderophore Sid, agbB, entB, entC, entA
Cytokines Tzs, TLRs, PDGFA, PDGFB, PDGFC, PDGFD
GA3 P450-3, P450-4, NPB20, ggs1, ggs2
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CONCLUSION

 This study isolated and characterized a 
new strain of Brevibacillus brevis, designated as 
S1-3, from Panchagavya. The 16s rDNA sequencing 
and phylogenetic analysis revealed that the 
isolate was closely related to B. choshinensis and 
B. agri 5-2. Genome sequencing of B. brevis S1-3 
revealed that the genome is of high quality and 
contains a wide range of genes involved in various 
cellular processes, including metabolism, cell wall 
synthesis, and capsule formation. In addition, 
the genome contains many genes involved in 
the biosynthesis of plant growth promoters and 
secondary metabolites. The presence of genes 
involved in the biosynthesis of indole acetic 
acid, ammonia, nitrogen fixation, siderophores, 
cytokinins, and gibberellic acid suggests that this 
strain has potential applications as a biofertilizer 
and in controlling plant pathogens. Furthermore, 
identifying the genes involved in antibiotic 
resistance, drug targets, transport, and virulence 
factors may provide insights into the potential 
biotechnological applications of this strain. The 
results of this study expand our understanding of 
the genetic and functional diversity of B. brevis 
and provide a foundation for future research. 
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