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Abstract
The profound impacts of global changes on biodiversity necessitate a more comprehensive 
documentation, particularly at the microscale level. To achieve precise and rapid insights into this unique 
diversity, the choice of an ideal species candidate is crucial. Neurospora crassa, a well-established 
organism in the field of biology, emerges as a promising candidate for this purpose. In our study, we 
explore the potential of the Carboxypeptidase A1 (CPA1) enzyme as a valuable tool for profiling global 
diversity. Our investigation has revealed that CPA1 possesses distinctive characteristics, notably its 
conserved solvent accessibility. This unique feature makes CPA1 an invaluable asset for microscale 
studies of global changes. The insights presented in our study serve as a practical blueprint, showcasing 
the application of structural biology in understanding diversity and global changes within microscale 
environments.
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INTRODUCTION

 Genetic diversity regulated with 
comprehensive complex mechanisms in different 
living organisms.1,2 The diversity of genes and 
proteins deduced and regulated from environmental 
conditions.3,4 These regulations constructed the 
different structural biomacromolecules to fulfill 
living organisms’ essentials.5 Thus, evolution of 
specific traits should be traceable in the genetic 
codes of biomacromolecules as well as their 
structures.6,7 The cell and cell growth should adapt 
with different environmental stresses.8 Proteases 
as the important enzymes in the cells, can disclose 
this diversity.9,10

 Most investigation on proteases was 
based on their needs in the market.11,12 Particularly 
microbial proteases that are used in many 
industries such as food processing and detergent.13 
Many proteases investigated by researchers14, 
although protease (carboxypeptidase A1, CPA1) 
in Neurospora crassa gained inevitable and 
unavoidable position as it is from one easy culturing 
model fungus (N. crassa) besides its variety of 
approved functions in the cell.15-17 CPA1 involves 
in many cells function from protein maturation to 
immune response and reproduction.12,18

 Diversity and climate change in global 
scale documented in many research articles.19,20 
The changes are in many aspects of the living 
systems such as species interactions21, marines’ 
communities22, and populations22,23 as well as pest 
and disease shift24 besides evolutionary genetic25 
and plasticity.26,27 These prospectives gained 
more attention in global scale.28,29 One important 
question of the many studies should be about 
the fingerprint changes of rising temperature and 
the ability of the earth to maintain the current 
biodiversity of plants and animals30 especially 
related to the shifts in the food supplies. However, 
the results and conclusion are mostly about the 
organism from different ecologically spread around 
the planet, thus the specific research on the 
organisms from smaller scale or even microscale31 
can provide better picture. The research goals 
should be the effect of solar radiation and 
temperature on DNA repair32,33, thermotolerance34, 
drought resistance and different stresses on living 
organisms35,36 and their macromolecules. All the 
effects would have the direct and indirect changes 

on biomacromolecules specially proteins and 
enzymes expression and structures. Therefore, 
finding the microscale environment as well as 
ideal species and macromolecule/s to study 
these effects can really help our understanding 
on climate change and biodiversity. 
 To address this issue the N. crassa as 
the model microscopic fungus belong to the 
Sordariomycetes class was found around the 
tropical and subtropical regions17,37 and isolated 
from many environments. Thus, it can be good 
example to study the evolution based on the 
climate changes. Short life cycle and easiness in 
culture made it suitable organism for genetic study. 
Investigation of different biomacromolecules of 
N. crassa in genes and proteins structures can 
reveal different environmental stresses such as 
temperature and light more easily than another 
organism.38 Therefore, structural study of N. crassa 
macromolecules that can represent different 
environmental diversity can be very revealing, 
enlightening, and educational. Thus, the objective 
of this research paper is to scrutinize the protease 
(Carboxypeptidase A1) structure in N. crassa 
with the help of computational approaches. 
This information can help in designing the lab 
experiment with more meaningful approach. 
Meanwhile, it would be a good help to find the 
better link with environmental conditions and 
diversity of biomacromolecules. 

MATERIALS AND METHODS

 The protease CPA1 was retrieved and 
annotated from the full genome of N. crassa in 
National Center for Biotechnology Information 
(NCBI). The specific physicochemical features and 
sequence analysis were done with the help of 
Swiss institute of bioinformatics-server (https://
www.expasy.org/).39

 The structural model was determined 
with homology modeling. The final models were 
evaluated with Ramachandran Map.40 Structural 
characterizations such as Secondary structure 
prediction and solvent accessible surface area 
were analyzed with Chou & Fasman secondary 
prediction and Fraczkiewicz and Braun’s method, 
respectively.41-45 
 Sequence alignment and phylogenetic 
tree were presented with Clustal Omega Multiple 

https://www.expasy.org/
https://www.expasy.org/
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Sequence Alignment program [http://www.ebi.
ac.uk/Tools/msa/clustalo/] and MultAlin server 
[http://multalin.toulouse.inra.fr/multalin/] and 
MEGA software version 4.0. Domain identification, 
subcellular localization and gene synteny were 
performed with the information from NCBI 
genomic database, respectively.46,47

RESULTS

 Molecular weight of the CPA1 is around 
45 KDa with neutral pH of isoelectric point (pI) 
(Table 1). The total of negative and positive 
charges residues in the structure of the CPA1 is 
equal. Aliphatic index (AI) and GRAVY showed this 
molecule is thermostable and slightly hydrophilic. 
The instability index indicated the stability of 
CPA1. The average estimated half time before 
degrading in the cell was around 20 to 30 hours. 
The extinction coefficient at 280 nm in water 
estimated to be 78520. The molecule consisted of 
high Ala, Gly, Ser and Thr residues (Table 2). The 
least residue is Cys that form two disulfide bonds 
(Cys250-Cys 274, Cys 326-Cys 361). There is signal 
peptide on the n-terminal sequence of CPA1. 
 The 3d model structure provided with 
homology modeling with the procarboxypeptidase 
A (1PCa.1.A) template with more than 36 percent 
sequence identity and 92% coverage (from res24 
to res 422) showed high percentage of helices 
followed by sheets secondary structure (Figure 1). 
The CPA1 is monomer with zinc ion. The evaluation 
of predicated model had QMEAN of -3.06 and Cβ=-
2.14 with solvation around the -1.85 (Table 3).
 T h e  m o d e l  i s  h i g h l y  a c c e pte d . 
Ramachandran map (Figure 2) indicated that 
more than 93 percent of residues were in highly 
acceptable position and only the 1.27% was 
considered as outsider (Table 3). The model was 
applied for the refinement with Galaxy Refine 
tool (http://galaxy.seoklab.org/cgi-bin/submit.
cgi?type=REFINE), however the evaluation of the 
model didn’t change significantly, showed that 
homology modeling had significantly predicated 
the correct position of the CPA1 residues. 
 Protein-protein interaction showed that 
the CPA1 had interaction with serine peptidase, 
alpha-1,3-glucosyltransferase, endopeptidase K 
and glycoside hydrolase (1,4-galacrutonidase)  
(Figure 3). The whole genome of the N. crassa Ta
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showed in the Figure 4 and the CPA1 was in the 
proximity with NCU07516 gene that is RING finger 
membrane protein.
 Surface and nucleus accessibility showed 
residues VAL72, ILE73, LEU97, GLY178, ALA182, 
VAL190, ALA191, ASN224, GLY227, ASN241, 
GLY252, ASP254, ALA286, PRO321, GLY323, 
THR368, GLY369, ASP373, GLY396, ILE404, GLY408 
had zero accessibility to the solvent (Table 4). 
These residues should be involved in the stability 
and conformational rigidity of the structure. On 
the other hand, the residues ARG27, LYS168, 
ARG341, ASP115, LYS298, TYR110, LYS 49, GLU86, 
LYS300 and ARG133 had the maximum accessibility 
to the solvent and considered as the functional 
residues.
 Finding the conserved residues in 
comparison with other CPAs showed that residues 
181H, 183R, 184E, 224N, 226D, 227G, 240K, 
257R, 258N, 280G, 373D and 410E were totally 
conserved beside that the residues 67G, 106G, 
168K, 210S, 333N, 394A and 67G had high 
frequency compared to others. In the other 
positions all kind of the residues were seen and 
all of them exposed partially on the surface 
of the enzyme. It is interesting that conserved 
residues were all functional residues. Except for 
conserved residues, the tolerance of the residue 
exchange was acceptable in other positions of the 
structure. The maximum frequency was related 
to the positions 333N and 394A that can help to 
understand the most alternative residue in the 
structure. The residue exchange in other parts of 
the enzyme was observed however the frequency 
of them are not the same (Figure 1).

DISCUSSION

 The scientific approach to find the 
interaction of biological diversity and climate 
condition is exploring based on the ideal model 
species and focusing on the diversity of major 
biological macromolecules in that species. Thus, 
structural biology of the biomacromolecule can 
be very suitable and informative specially with 
the help of computational analysis.48-52 Here N. 
crassa from the Sordariaceae family can be good 
example for the structural analysis of CPA1. This 
fungus was long time an ideal model for research 
in different aspects of molecular biology and 
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genetics. Research on circadian rhythm-based 
physiological regulation53, RNA interference (RNAi) 
post-transcriptional gene silencing54,55, and DNA 
methylation-mediated epigenetic control56 have 
been done previously with this model organism. 
The good source of genetic sequences in public 
databases such as NCBI and many biological 
molecular tools and tractability as well as rapid 
culturing and single gene knock out collection 
made this fungus more attractable in filamentous 
ascomycete. The entire genome of N. crassa 
includes the seven chromosomes is available in 
the public data bases.57 This information can help 
to find the effect of the light and temperature58 
particularly on CPA1 gene very easily during the 
22 hours Lab work.59 Even complete growth cycle 
of N. crassa can easily observed and documented 
in less than one week. Additionally, the effect of 
the different environment on different life cycle 

time60 as well as gene annotation for specific genes 
would be easily documented.61

 S t ructura l ly  character i zat ion  of 
biomacromolecules provides great insight in 
defining the evolutionary and biodiversity 
changes during the time for specific species.62-64 
Carboxypeptidases are the hydrolytic enzyme65 
with the ability to cleave the c-terminal peptide 
bond of proteins and releasing free amino acids. 
They have many functional roles in cells such 
as degradation and modulation of intracellular 
proteins. They categorizing in three distinct groups 
including serine, metal and cysteine. Here in the 
structure of CPA1 the 3dmodel had zinc as the 
metal in the structure. CPA1 had two disulfide 
bonds in the structure that were also observed in 
animal cells polypeptides carboxypeptidases.66-71 
Generally, peptidase or protease categorized on 
seven group based on the catalytic residues: serine, 

Table 4. Solvent accessibility of CPA1

Surface Buried  Apolar Total     Total SASA      Apolar       Backbone     Sidechain
atom  atom  In/Out SASA      In/Out     In/Out       In/Out      In/Out

    nucleus surface nucleus surface nucleus surface nucleus surface

1684 1359 9576.4 16122.86 1836.02 9508.03 1047.54 5725.47 573.63 1906.3 1262.41 7601.71

Figure 1. 3D model of CPA1 in solvent (A), surface and nucleus solvent accessible area (SASA) (B) and conserved 
residues (C). The data presented in angstrom (Å2)
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cysteine, threonine, aspartic, glutamic, asparagine 
and metalloproteases.12 The mechanism of action 
to cleave the peptide bond is by making the amino 
acid residue nucleophilic with catalytic triad. The 
histidine residue involved in the activation the 
serine, cysteine, or threonine as a nucleophile.
 One important aspect for the investigation 
on CPA1 of the N. crassa is finding the changes 
in the active optimal pH. Furthermore, more 
information of specific zero accessibility to solvent 
residues identified in our research would help to 
understand the effect of different environmental 

stresses on evolution of this structure, additionally 
post translational modification of them would 
be informative in the specific environment. On 
the other hand, the residues with maximum 
accessibility to solvent could be very good target to 
find the environmental variability of these amino 
acids in microscale global changes. Combination 
of the solvent accessibility and the conserved 
residues could give the more information about 
the structural insight. This information (conserved 
and accessible solvent) in combination would help 
to find less and more tolerable part of the structure 

Figure 2. Ramachandran plot (A) and ERRAT plot (B) (https://saves v6.0.mbi.ucla.edu/)
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Figure 3. Protein-protein interaction-of CPA1

Figure 4. Syntenic genes and full genome structure of N. crassa. 
CPA1 indicated in red
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to examine for assessment of warming and global 
changes in macro and microscale. Meanwhile 
changing the amino acids would change many 
features of protein that provide great connection 
with environmental condition.
 Reports  on  computat iona l  post 
translational Carboxypeptidase showed the slight 
modification of the molecules to performing its 
function.72-76 This post translational included the 
phosphorylation, O-glycosylation, acetylation in 
different sites of Serine, Threonine and Tyrosine.

CONCLUSION

 Computational analysis of CPA1 from N. 
crassa, the model fungus presented. For future 
studies the Lab isolating the new carboxypeptidase 
from this species in different climates (such as 
tropical or subtropical) and finding the SASA 
and comparing the results would provide better 
insight into the interaction of environmental 
stresses on this enzyme and generally biodiversity. 
Furthermore, finding the effect of light and 
temperature on CPA1 gene mutation and even in 
the post-translational modification of the structure 
would give better insight into global warming and 
biodiversity.
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