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Abstract
Every minute, the world’s population grows, and in order to feed them, crop output and agricultural 
productivity must be improved by adding crucial microorganisms that boost plant yields in various 
ways through nitrogen fixation, the secretion of both plant growth regulators and 1-aminocyclopropane 
1-carboxylate deaminase, as well as some antimicrobial agents. Numerous endophytic bacteria have 
recently been used to increase plant yields, and agricultural production in addition to reducing salt 
stresses. Many scientists have made an effort to clarify and comprehend the processes by which 
bacteria promote plant growth and production. A vital substance known as 1-aminocyclopropane-1-
carboxylate (ACC) deaminase is produced by several bacteria, plants, and fungi to decrease ethylene 
levels in a plant grown under different environmental stress. The gaseous hormone ethylene (C2H4) is 
synthesized in plant tissues from the precursor ACC, and it has numerous biochemical roles in plants, 
such as cells differentiation and tissue development, seedling, root hair, leaf, and flower growth and 
development in addition to fruit ripening and formation of anthocyanin and volatile compounds. Thus, 
this critical enzyme had influential roles in plants during their positive interaction with bacteria which 
increase plant growth due to auxin production and protect plants against different environmental 
stress like drought, high salts, wilting, high level of heavy metals, contaminants with pesticides, and 
microbial pathogen infections. Different bacterial genera are highly ACC deaminase-producer, and these 
bacteria support plant growth and agricultural process. In conclusion, bacteria can replace chemicals 
in a variety of environmentally benign methods to boost soil fertility and plant productivity. However, 
much research is required to determine the efficacy of these bacteria before suggesting their use on 
a broad scale in the field.
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INTRODUCTION

 Over the past 50 years, the world’s 
population has increased and doubled to over 7.5 
billion people. As a result, the demand for food 
is rising quickly, and the food production sector 
faces significant challenges in providing a potential 
energy food supply. The main sources of food 
production are agriculture and fisheries. More 
than 820 million people experience food scarcity or 
lack of access to food, as the population suffering 
from food insecurity has climbed from 15% in 
2000 to over 17% recently.1,2 Today, decreased 
food production led to hunger and malnutrition 
of babies and adults in poverty, often exacerbated 
by the conflict that inhibits access to food. 
 In general, widespread famine was only 
expected to be avoided by boosting plant growth 
and output, minimizing environmental stresses 
on plants, and bringing down global population 
levels to sustainable levels.3,4 In the middle of the 
20th century, farmers and scientists tried their 
best to boost plant growth and production by 
managing good practices, creating new fertilizers, 
pesticides, and plant varieties, using crop rotation 
and irrigation techniques, as well as applying plant 
growth-promoting bacteria (PGPB) and helpful 
microbiomes. Numerous bacteria live in the soil, 
particularly in the plant rhizosphere, in close 
proximity to plants, and they employ a wide range 
of strategies and defense mechanisms to promote 
plant growth and shield plants from pathogens and 
all environmental stresses. 
 Increasing plant growth and output, 
lowering environmental impacts on plants, and 
bringing the global population down to a tolerable 
level were primarily projected to be the main 
ways to prevent widespread hunger.3,4 Around 
the middle of the 20th century, farmers and 
scientists tried their best to boost plant growth and 
production by managing good practices, creating 
new fertilizers, pesticides, and plant varieties, 
using crop rotation and irrigation techniques, as 
well as applying plant growth-promoting bacteria 
(PGPB) and helpful microbiomes. Numerous 
bacteria live in close proximity to plants in the 
soil, especially in the plant rhizosphere, and they 
employ a wide range of strategies and defense 
mechanisms to promote plant growth and shield 
it from pathogens and environmental stresses.

Different environmental stress that faces plants 
 Numerous studies have shown that 
abiotic stresses like drought, extreme soil salinity, 
and human activities, which reduce soil fertility 
and increase the extent of saline in agricultural 
soil, cause an increase in the salt composition 
of soils worldwide, which reduces plant growth, 
health, and production, are highly detrimental 
to plant growth and agricultural productivity.5,6 
Salts can enter the soil through natural processes 
or human actions like irrigation with unfit water. 
According to reports, one of the major abiotic 
elements is salt, which seriously impacts plant 
growth and food production, particularly in soil 
with high salinity levels that are often simple to 
detect using the electrical conductivity method. 
Saline soils are defined as those with electrical 
conductivity greater than four dS/m or higher, 
and sodium chloride is the most prevalent soluble 
salt in soils, followed by calcium and magnesium 
chlorides.7 Soil salinity detection techniques 
must be used to combat poor plant growth and 
increase productivity. According to estimates, 
salt and other stressors like acidity and alkalinity 
have an impact on plant growth. Salt accumulation 
is steadily increased by rain, wind, soil erosion, 
anthropogenic activity, and irrigation until it 
reaches a point where crop yield is significantly 
impacted. To promote plant development under 
saline circumstances, experts and agriculture 
authorities advise choosing suitable salt-tolerant 
crops and controlling soil salinity.8

 Another strategy is the use of plant 
growth promoting bacterial to solve or decrease 
the salinity impacts and to improve the agricultural 
economy productivity through decreasing the 
induction of some materials like amino acids, 
Ethylene, or sugars, which are with antioxidant 
enzymes, the primary plant defense mechanisms 
to overcome salinity and increase the productivity 
of the plants under the saline conditions.9,10

 Evidence shows that utilizing poor 
irrigation techniques raised the saline level of 
the soil, which is thought to be one of the major 
causes of the destruction of the farmed regions 
and the accumulation of salt around the roots and 
inside plant cells. The effects of hypersalinity on 
most grown plants, including osmotic and ionic 
stress, are well documented.9,11,12 There have been 
numerous attempts to use plant manipulation to 
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overcome the inhibitory effects of salts on plant 
growth, such as the creation of salt-resistant plants 
through genetic transformation and selection of 
more salt-tolerant varieties, but testing those 
plants in the environment takes a lot of time and 
requires numerous lab efforts to be successful. 
13,14,15 The application of beneficial plant growth-
promoting bacteria related to plants is another 
strategy. 13,16,17 Additionally, the extraction of 
mineral resources results in the release of 
numerous heavy metals into the soil, causing soil 
pollution, which poses a serious issue for plants as 
they gradually expand. Increased levels of these 
heavy substances in the soil resulted in increased 
plant absorption, accumulation, and, ultimately, 
limited growth and plant toxicity. Furthermore, 
these heavy metals may enter a person’s body and 
result in various health issues. Fortunately, some 
microorganisms can tolerate and withstand toxic 
heavy metals, resist them, and have an excellent 
ability to remove heavy metals efficiently and 
affordably.18 

Saline stress and ethylene synthesis in plants 
under stress
 Osmotic and ionic stress, which affected 
the majority of critical physiological processes 

including photosynthesis, were the two main issues 
that plants encountered under high salinity.12,19 
While osmotic pressure causes dehydration and 
elongation and the growth of the cells and lateral 
buds is halted due to the accumulation of sodium 
poisonous in leaves and other plant tissue, ionic 
stress results in excessive sodium influx, which 
causes the outflow of potassium ions. Plants 
produce a lot of reactive oxygen species under 
stressful conditions like salinity, drought, flooding, 
or heavy metal contamination,20,21,22 which causes 
nucleic acid damage like loss of nucleotide 
bases, mutation, DNA protein linkage, and DNA 
degradation.23, 24 
 Moreover, it was noticed that under 
stress, plants produce Ethylene which has an 
essential role in the association relationship 
between plants and bacteria. The interactions of 
Rhizobium with legumes roots were inhibited, and 
root nodule formation was decreased, which led 
to a delay in the nitrogen fixation process.16,25-27  
Under saline stress conditions, symbiotic bacteria 
helped plants adapt, modulate their responses, 
and survive under stress due to the production of 
ACC deaminase, volatile metabolites, amino acids, 
antimicrobial agents, and polysaccharides.23

Figure. Ethylene biosynthesis from methionine as a precursor



  www.microbiologyjournal.org1344Journal of Pure and Applied Microbiology

Albureikan | J Pure Appl Microbiol. 2023;17(3):1341-1355. https://doi.org/10.22207/JPAM.17.3.59

 Typically, Ethylene is identified as a 
gaseous hormone produced by all higher plants 
and some microorganisms. This is consistent 
with the observation reported by Hays et al.28 
who reported that Ethylene produced under 
special conditions,  transported freely through 
plant tissues by passive diffusion and at low 
concentrations, induced seed germination, root 
elongation, leaf formation, production of volatile 
compounds and initiation of flower and fruit 
stages.29,30

 The synthesis of ethylene in plants was 
documented from methionine and ATP, which form 
S-adenosyl-methionine (SAM) by the enzyme SAM 
synthetase. Then, SAM is then transformed to ACC 
using ACC synthase enzyme, and finally, the ACC 
produces Ethylene using ACC oxidase enzyme, as 
summarized in Figure.24,31, 32

Impact of saline soils on the biodiversity of soil 
microbiota
 Salinity stress is a significant factor 
affecting agriculture productivity, and emerging 
new varieties, tolerant to different biotic and 
abiotic stress factors via hybridization and 
genetic engineering is expensive process and 
time-consuming but plant growth-promoting 
microorganisms are more cost-effective and 
environmentally friendly to ease stress effects. 
Delivery of ACC-deaminase and plant growth 
regulators production via beneficial bacteria 
mainly affected Ethylene and abscisic acid-
dependent signaling positively, facilitating plant 
growth and alleviating stressful conditions 
positively. It should be noted that microbial 
communities are found mainly in all types of 
soils, and their Biodiversity is high, and their 
numbers are high in the Rhizosphere, and the 
number of bacteria decreases as we move away 
from the root zone, which is rich in nutrients. 
Moreover, the bacterial counts and types were 
affected by both abiotic and biotic factors such 
as soil temperature, humidity, type, salinity, pH, 
composition, and fertility.6 These factors played 
more significant roles in transforming the soil 
microbiota, which forms varied interactions and 
relationships with plants and increases growth, 
development, production, and protection against 
fungal and bacterial pathogens. In addition, the 
soil microbiota played a significant role in minerals, 

agricultural and organic waste cycles, and soil 
fertility degradation. Therefore, soil salinity mainly 
affects soil microbiota diversity, abundance, and 
their potential to interact with plants, and it allows 
the survival of halo-tolerant bacterial and fungal 
strains in addition to mycorrhizae. Yaish et al.33,34 
evaluated the endophytic microbiota associated 
with Medicago truncatula plants, and they added 
that soil salinity affects 70 %  of endophytic 
microbiota detected using sequencing of 16S rDNA 
genes. They added that the isolated endophytic 
bacteria might pose plant growth-promoting 
strategies like ACC deaminase, ammonia and 
IAA production, Zn+2 and PO4

-3 solubilization, 
and secondary product secretion. Similar results 
were obtained for date palm seedlings, whereas 
salt stress differed the endophytic microbiota 
associated with the root system and significantly 
decreased the genera Rhizobium, Enterobacter, 
and Pseudomonas.33,34,35 

Plant growth-promoting bacteria
 Genera Achromobacter,  Baci l lus, 
Brevibacterium,  Citrobacter, Enterobacter, 
Lec lerc ia,  Ochrobactrum, Parastrephia, 
and  Serratia were reported by many authors 
to improve plant growth.11,36-41 Under salinity 
stress, some growth-promoting bacteria could 
program plants to overcome stress and grow 
well by producing ACC deaminase and IAA that 
significantly increase sugar, organic acids, amino 
acids, and proteins. Many future critical studies 
are needed to guide us on using plant growth-
promoting bacteria (PGPB) to manage plant 
growth in the field, wherever salinity is the primary 
constraint. 
 Under extreme conditions, many 
promising novel microorganisms within the genera 
Bacillus, Nocardia, and Streptomyces are present, 
and they are undoubtedly prominent producers 
of putative new bioactive agents with excellent 
plant-promoting activities. Soil bacteria are often 
described as chemical gold, considered excellent 
sources of new natural products, and a treasure for 
plants and humans. Over 500,000 living microbial 
species, divided into many different families, were 
isolated from the soil, and new isolates are still 
to be discovered. The soil surrounding the plant 
roots or root rhizosphere is a rich place with 
PGPB, which use soil nutrients and plant root 
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exudate to grow, and their numbers increased 
in the rhizosphere area due to the presence of 
a high quantity of root exudate compared to soil 
far from the plant root area. Root area is a rich 
source of nutrients, and root exudates contain 
high amounts of vitamins, soluble carbohydrates, 
simple proteins, amino and organic acids, small 
molecules, and organic polymers. Root exudate 
reaches about a third of the fixed carbon by the 
plant. Thus, the region around the root becomes 
the richest with the microbes of the Rhizosphere. 
Each plant has its endophytes microbiome, which 
can be isolated from the root system, leaves 
parts (endosphere), flowers, or fruit tissues, but 
other microbe inhabits the leaf or stems surfaces 
(phyllosphere).42 The presence of large numbers of 
the microbiome is due to the presence of nutrients 
exuded by the roots of the plant.13 Typical soils 
contained  107- 108 cfu/g of bacteria, 103-104cfu/g 
of actinomycetes, and 104- 105  spore/g of fungi, 
and these numbers decreased in poor or stressed 
soils.43 These microorganisms enhance soil fertility 
and plant growth and make plants more tolerant to 
salt stress, heavy metals, and toxic pollutants and 
pathogens.44,45,46 The most active bacterial isolates 
belong to the genus Bacillus.37,38, 40 
 According to studies by Siddikee et 
al.,11 Upadhyay et al.,39 Saeed et al.,47 and 
others, numerous microbial species including 
Aeromonas, Pseudomonas, Bacillus, Azotobacter, 
and Azospirillum have been discovered as plant 
growth-promoting bacteria. Also connected to 
the nodules on the roots of Medicago sativa were 
Bacillus megaterium and Enterobacter cloacae, 
while Pseudomonas monilia was identified from 
Solanum lycopersicum. All of these microorganisms 
promote growth. Numerous studies have 
demonstrated that whereas rhizosphere soil is 
rich in nutrients because of root exudates that 
allow significant bacteria to grow and prosper, 
non-agricultural soils, poor soil, and soil with 
harsh circumstances including salt, dryness, 
and absence of critical nutrients have low 
microbiota. Furthermore, compared to other 
plant growth-promoting bacteria, halophilic and 
halotolerant bacteria have distinct advantages in 
saline environments which enable them to grow 
and survive in saline environments. Thus many 
studies aimed for a safe, eco-friendly, and efficient 

strategy to significantly increase plant growth and 
production under stress conditions. 

The most active bacterial genera that promote 
plant growth
 Leclercia adecarboxylata MO1, which 
produces the halotolerant IAA, is extensively 
distributed in a variety of environmental sources 
and can support tomato growth and plant 
resistance to salinity stress. According to Tamura 
et al.48, Kelemu et al.49, Sun et al.50, Verma et al.51, 
and Shahzad et al,52 the preceding isolate, known 
initially as Escherichia adecarboxylata, may be 
isolated from a variety of plant components, 
the rhizosphere, soil, and water. As a solute in 
osmatic alterations and excess cation balance 
during salinity stress, rhizosphere microorganisms 
can drive organic acid metabolism in plants when 
stressed. Increases in organic acids following the 
injection of helpful bacteria have been observed 
under osmotic pressure. These acids decrease 
nutrient deficiencies and stress tolerance because 
they can solubilize phosphorus from insoluble 
complexes to make it available for plants.  
F u r t h e r m o r e ,  t h e  o r g a n i c  a c i d s  a n d 
exopolysaccharides produced by the soil microbiota 
operate as active components for bacterial 
quorum sensing during the development of a 
biofilm on the root surface and the colonization 
of the rhizosphere by bacteria. By eliminating 
biotic and abiotic stresses, these bacteria produce 
a high number of soluble amino acids that act as 
the building blocks for secondary metabolites that 
raise plant tolerance. It has been demonstrated 
that PGPB actively contributes to stress tolerance 
by increasing IAA production and promoting 
enhanced plant growth in inoculated plants.  
 The genus Bacillus is recognized as a 
sporulating bacterium that exhibits ubiquitous 
prevalence in virtually any habitat and under 
adverse conditions. In this regard, Bacillus species 
are able to withstand different environmental 
stresses through a variety of direct and indirect 
actions that support plant growth. These actions 
include lengthening roots and aerial structures 
through the production of enzymes, antibiotics, 
and plant growth regulators, as well as growth 
under various stress conditions due to the ability of 
the vegetative cells to sporulate.6 For many years, 
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authors have claimed that the genus Bacillus is 
magical and that its species are ideal candidates 
for possessing a wide range of biological functions 
with advantageous processes and serve as 
important bio-inoculants, bio-stimulants, bio-
fertilizers, or biocontrol agents. In the field 
and under salt stress conditions, to combat 
adverse conditions like salt, drought, and nutrient 
deficiency, Bacillus cells are successfully used as 
soil inoculums.13 Particular, saline-tolerant bacillus 
cells were isolated, purified, characterized, and 
identified from the soil, and these isolates showed 
an excellent broad capacity to promote the growth 
of diverse plant species, and their interactions with 
plants had unlimited benefits.12,23,53-57 It is unknown 
whether environmental microorganisms increase 
their salinity tolerance or decrease soil salinity to 
support plant growth when conditions are salty.

The use of traditionally and genetically engineered 
microorganisms to increase plant growth
 Using traditionally and genetically 
e n g i n e e r e d  p l a n t  g r o w t h - p r o m o t i n g 
microorganisms is an excellent method to 
improve plant growth under saline conditions.58,59 
According to a study, the use of beneficial 
microorganisms for plants grown under stress 
improved plant tolerance. These microorganisms 
included nitrogen-fixing bacteria, which have a 
close relationship with plant roots and produce 
hormones that will enhance nutrient uptake, 
secrete siderophore, solubilize phosphate, and 
prevent the growth of plant pathogens. Bacteria 
that produce IAA and ACC deaminase play crucial 
roles in plant growth as well as in defending 
plants from disease and environmental stress. 
Root exudates were transformed by rhizosphere 
bacteria into plant growth regulators like IAA, 
which promote plant growth and trigger the 
transcription and production of the enzyme ACC 
synthase. Environmental stress has been observed 
to cause ACC deaminase to produce ethylene from 
ACC.60

Roles of soil microbiota and plant growth-
promoting bacteria
In the removal of heavy metals, nutrient 
recycling, and degradation of agricultural wastes
 Rhizosphere is rich with free-living 
saprophytic plant growth-promoting bacteria 

(PGPB) that live in association with plant roots 
to enhance plant growth either directly or 
indirectly.61,62 All significant bacterial isolates had 
a metabolic activity that made them resistant to 
different concentrations of heavy metals. Bacteria 
adapted to low levels of heavy metals and can 
resist high levels over time. Thus, they can be 
used in the bioremediation process of these 
environmental pollutants at the lowest costs 
and best effects. The bacterial genera Bacillus, 
Enterobacter, Nocardiopsis, and Pseudomonas 
are considered important genera resistant to 
heavy metals from contaminated environments 
and have high bioremediation potential. Bakran et 
al.63 isolated two bacterial isolates, Streptomyces 
toxytricini and Streptomyces sp., with an excellent 
ability to remove lead (Pb++) from polluted 
industrial wastewater. The highest biosorption 
rate (99%) was at pH eight and temperature 37°C. 
Jafarzade et al.64 reported that Serratia sp. WPRA3 
showed high tolerances to heavy metals like Ni, Co, 
Cr, Pb, and Zn and can be used to clean polluted 
soil. Similarly, Cimermanova et al.65 identified nine 
isolates of the genus Streptomyces that can survive 
in toxic environments and were highly resistant to 
Pb, Zn, Cu, and Ni. Afzal et al.66 reported that high 
concentrations of heavy metals are adsorbed on 
the bacterial cell walls, affect cell membranes, and 
form pores in them, and these effects differ with 
the metal type. 
 Bacteria use many techniques to protect 
themselves from unfavorable conditions like 
heavy metals and salinity. They had physiological 
systems with different safeguard protocols to 
protect themselves against contaminants, like 
the Efflux protocol, which exports toxic metal ions 
to the outside of the cell, and they are precise 
to a particular heavy metal ion, accumulation, 
and complex formation protocol leading to the 
formation of metallothioneins or cysteine-rich 
proteins which prevent the exposure of essential 
cellular components to the toxic metal. Reduction 
protocol which degrades the contaminant using 
enzymatic reduction to less toxic materials 
released outside the cells, and finally, alteration 
of cellular components protocol which decreases 
the cell sensitivity and adapts themselves to the 
presence of the toxic metal ions through mutations 
or genetic transformation67-69 Some bacteria 
could accumulate the toxic metals on their cell 
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walls (biosorption process, complex formation, 
degradation through reduction, oxidation, or 
precipitation) and inhibit their passage through 
the cell membrane.
 In the environment,microorganisms play 
essential roles in recycling different nutrients, 
primarily carbon, nitrogen, and mineral, in addition 
to energy which moves among living and nonliving 
things. As a result of the complete nutrient 
recycling process, soil quality was enhanced, 
crop yield was increased, and the used quantity 
of chemical fertilizers was decreased. In addition, 
microorganisms enhanced plant growth using 
different protocols like secretion of secondary 
metabolites and bioactive agents, increased iron 
and soluble phosphate viability, and purified the 
soil from chemical hydrocarbons, phenol, heavy 
metals, and agricultural wastes by different 
biodegradation processes. Thus, they can be 
used for various industrial and biotechnological 
applications. 

In the production of 1-aminocyclopropane-1-
carboxylate deaminase
 The enzyme 1-aminocyclopropane-
1-carboxylate (ACC) deaminase is recorded in 
some microorganisms and act as plant growth-
promoting enzyme which cleaves ACC, the 
immediate precursor of the plant hormone 
ethylene producing ammonia and a-ketobutyric 
acid, which diminishes the bad properties of 
high levels of Ethylene.70 Under biotic and abiotic 
stresses, Ethylene is produced by plants as a vital 
signaling product which negatively affects plant 
growth.71 Presence of some microorganisms may 
reduce the effects and lower the concentration 
of ethylene hormone in plants. Previous studies 
have demonstrated that inoculation of plants 
with ACC producing bacteria declined ethylene 
levels, resulting from decreasing resistance of 
plant growth under biotic and abiotic stresses.72 
Some plant growth-promoting bacteria secrete 
a varied range of ACC deaminase which reached 
to approximately e ≥20nmol a-ketobutyrate mg-

1h-1, allowing the bacterium to grow on ACC and 
act as a plant bio-fertilizer. It was reported that 
one bacterial isolates grew well on a medium 
supplemented with ACC, and this isolate had the 
highest level of ACC deaminase activity, ranging 

between 0.005 to 0.107 mmol. a-ketobutyrate 
mg-1h-1. Thus, it was reported as an excellent and 
effective bacterium for promoting plant growth, 
while some other isolates had low amounts of 
ACC deaminase. From the previous results, this 
isolate may be used to promote the development 
of plants, particularly under stressful conditions 
such as phytopathogens, and this activity could 
be utilized for enhancing plant growth through 
production-resistant plants.36

 Moreover, Bacillus species produce 
1-amino cyclopropane-1-carboxyl ic  acid 
deaminase, which enables it to have synergistic 
stress tolerance activities with plants, such as the 
accumulation of trehalose, and this phenomenon 
is discussed and highlighted.46 In some cases, 
stress conditions in Bacillus act as inducers to 
some plant growth regulators and protective 
agents against some plant diseases. Thus, finding 
such bacterial species in saline agroecosystems 
is not exceptional, given that ACC deaminase 
activity is one of the primary mechanisms to 
fulfill this beneficial function in the interacting of 
PGPB with plants. For example, Heydarian et al.73 
detected that plants that contained the bacterial 
acdS gene showed increased salinity tolerance 
due to the production of reactive oxygen species 
to avoid cellular injury. In addition, some critical 
bacteria associated with plant roots secreted 
ACC deaminase to improve salinity tolerance and 
decrease the induction of Ethylene and abscisic 
acid under stress conditions.
 Under salt or other environmental 
stresses, plants produce an increased amount of 
ACC synthase and ACC oxidase, which leads to the 
formation of Ethylene from the direct precursor 
ACC but the presence of PGP bacteria that 
produce ACC deaminase enzyme act decreases 
and degradation of ACC to a-ketobutyrate and 
ammonia which lower plant inhibitory ethylene 
levels.74,75 It was reported that the quantity of 
Ethylene was decreased by the presence of 
ACC deaminase-producing bacteria, which only 
reduced the quantity of Ethylene produced 
but did not prevent its synthesis completely. 
Thus, generally, PGP bacteria that contain ACC 
deaminase promote plant growth, reduce the 
damage due to stress, and help plants adapt and 
survive. 
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 In this regard, the ACC deaminase from 
PGPB acts as an essential sink for ACC in the plant, 
lowers its level, and prevents its accumulation in 
large amounts, but the produced bacterial indole-
3-acetic acid (IAA) facilitates plant growth and 
may enhance ACC synthase, and the synthesized 
amount of Ethylene may inhibit IAA production 
and plant growth and so no. However, a PGPB 
containing the ACC deaminase enzyme decreases 
feedback inhibition.16,25,76

 It is also consistent with the observation 
that Leclercia adecarboxylata is a plant growth-
promoting bacteria because it produced significant 
amounts of ACC deaminase and IAA, which 
enhanced plant growth and improved its ability 
to tolerate salt stress. Meanwhile, many bacterial 
isolates have been reported to increase metal 
bioremediation by some plants due to the 
synthesis of both ACC deaminase and IAA.75

 At present, many rapidly unpredictable 
climatic changes and environmental stresses are 
due to the growing global population and their 
anthropogenic activities, which negatively affect 
plant growth and production in addition to food 
security which is needed to be maintained in a 
sustainable and eco-friendly way. Among the 
various and significant environmental stresses that 
threaten life on the earth is climate change which 
causes many substantial stress factors like salinity 
stress which badly influences more than 77 million 
hectares of agriculture production.
 The microbiome of plants, which live 
in stressful conditions, frequently contains 
ACC deaminase. Timmusk et al.43 conducted 
research on the significance of this enzyme and 
its value to plants. It is preferable to identify and 
describe rhizobacteria in microenvironments like 
the rhizosphere because they have important 
functions and produce the enzyme ACC deaminase, 
which aids in plant growth.77-79 In vitro bacterial 
ACC-deaminase has been linked directly to root 
growth.38,79 However, the relationship between 
bacteria and plants is intricate, and a bacterium’s 
impact can alter as its environmental conditions 
do.29 The outcomes obtained by Glick et al.74 
demonstrate the significance of bacterial ACC 
deaminase in enhancing plant growth.
 Finding ACC deaminase activity in 
PGPB and screening for the acids gene are 

two separate approaches. This activity has a 
wide distribution in many bacterial genera, 
according to searches for the acdS gene in the 
genomes of soil microorganisms and endophytic 
bacteria.80, 81 Additionally, the actinomycetes like 
Deinococcus, Proteobacteria, and Formicates 
bacterial groupings all showed the phylogeny 
of the acdS gene. Along with Lrp-like regulatory 
proteins called AcdR which control acdS gene 
expression in proteobacteria.82 The beneficial plant 
fungus Trichoderma asperellum, which similarly 
secretes ACC deaminase, is another class of non-
bacterial microorganisms which benefit the plant 
and also secrete ACC deaminase, and has a role 
in phytopathogenic biocontrol and plant growth 
promotion.83

 The aforementioned instance is one 
of the scant number of studies83,84,85 that have 
documented the activity of ACC deaminase. ACC 
deaminase has been found in a variety of rhizobia 
before.86 According to reports,26, 27, 76 Arthrobacter 
protophormiae contains ACC deaminase and is 
linked to other advantageous microorganisms that 
promote rhizobium nodulation and mycorrhizal 
infection, resulting in the induction of salt stress 
tolerance in Pisum sativum plants. The enzyme 
was previously only known to exist in free-living 
bacteria, yeast, and fungi. Studying the bacteria, 
which work in symbiosis with legume plants to 
fix atmospheric nitrogen is important. Later, the 
presence of ACC deaminase has been reported 
not only in the genus Rhizobium but also in several 
genera of family Rhizobiaceaelike Sinorhizobium 
and Agrobacterium and family Phyllobacteriaceae 
like genera Phyllobacterium and Mesorhizobium in 
addition to Azospirillum.87, 88 Many genera of PGPB 
bacteria also exhibited ACC deaminase activities, 
like Aneurini bacillus, Pseudomonas, Ralstonia, 
Micrococcus, and Arthrobacter. 
 By creating mutant strains, isolating the 
target gene, and expressing it in heterologous 
hosts, one can examine the precise function of a 
gene. In the case of Pseudomonas sp. UW4’s acids 
gene, Shah et al.89 work involved the isolation and 
expression of this gene in hosts like Escherichia 
coli DH5, Pseudomonas putida ATCC 17399, and P. 
fluorescens ATCC 17400, none of which naturally 
contain ACC deaminase, allowing the transformed 
strains to grow in minimal medium. 
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 A similar approach was used by Brgido 
et al.90 to express the acdS gene in two strains 
of Mesorhizobium cicero, one of which is salt 
sensitive and the other salt tolerant. Additionally, 
M. ciceri is a bacterium that coexists with 
chickpea roots and fixes nitrogen. According to 
their findings, Mesorhizobium cells underwent a 
considerable metamorphosis that improved the 
symbiotic relationship when compared to the wild 
type. 
 By producing ACC deaminase in mutants 
of the genus Pseudomonads that lack it, Ali et al.84 
were able to further demonstrate the beneficial 
role of the bacterial acdS gene during the 
interaction of plants with their essential bacteria 
under saline conditions. This improved tomato 
growth, increased fresh and dry biomass, and 
increased chlorophyll contents.  
 Plants would naturally create ACC under 
stressful growth conditions, which would impede 
growth and development. It is important to note 
that numerous manuscripts25, 35, 41,91  have reported 
or suggested that the presence of ACC deaminase 
activity in PGPB is one of the key mechanisms 
that is involved in the bacterial promotion of 
plant growth. The list, as was previously stated, is 
enormous and keeps expanding as fresh original 
works are consistently released with new bulk soil, 
rhizospheric, and endophytic strains that promote 
plant development after the generation of ACC 
deaminase. 70,92,93,94 
 Likewise, plants produce Ethylene under 
stress, which regulates plant responses to biotic 
and abiotic stresses.70,95,96,97 However, in response 
to biotic and abiotic stresses, the plant frequently 
significantly increases endogenous ethylene 
production, which has detrimental effects on plant 
growth and is thought to be the cause of senescence 
in plants.70,84,98,99 Under ambient conditions, plants 
produce the necessary levels of ethylene, which 
confer beneficial effects on plant growth and 
development. It’s interesting to note that the 
PGPB also has the enzyme ACC deaminase,84,73,100 
which can convert the plant ethylene precursor 
ACC to ammonia and a-ketobutyrate, lowering 
the level of ethylene under different biotic and 
abiotic stresses,73 like salt stress,38, 101,102 flooding 
stress,103 drought stress,38 heavy metal stress,104,105 
and pathogen attack.36 As a result, bacteria that 

produce ACC deaminase lower the level of ACC 
in stressed plants, restrict the generation of 
ethylene, and so halt plant damage. Because 
plants are frequently subjected to conditions that 
produce the production of ethylene, it is advised 
that these bacteria be helpful for plant growth. 
The most active and widely dispersed bacteria 
in soil were luminous Pseudomonas isolates. 
They produced many enzymes and secondary 
metabolites, showed high catabolic flexibility, and 
had outstanding root colonization abilities. These 
earlier actions help plants withstand a variety of 
biotic and abiotic stressors. 38,106,107 Additionally, 
using 16S rDNA sequence analysis, the most active 
bacterial isolate in ACC deaminase production 
was identified as Pseudomonas fluorescens 
REN1, and this isolate significantly increased root 
elongation and growth of rice seedlings compared 
to control seedlings. They attributed this increase 
to the production of indole-3-acetic acid and ACC 
deaminase more than siderophore production or 
phosphate solubilization.108

 Tiwari et al.35 isolated thirty-seven 
bacterial isolates from twenty-five soil samples 
collected from India. All isolates contained ACC 
deaminase, which enabled them to use ACC in a 
culture medium as a nitrogen source. They added 
that Bacillus licheniformis and B. subtilis both had 
the highest levels of ACC breakdown (45.36% and 
45.03%, respectively). Comparing the two isolates 
to other isolates under stress conditions improved 
plant growth, cell wall polymers and quantity of 
protein, phenolic contents, and chlorophyll. The 
two isolates also played key roles in producing IAA, 
siderophore and HCN, phosphate solubilization, 
removal salt, and polyethylene glycol stress. 
Elephant grass (Pennisetum purpureum) and 
model grass (Brachypodium distachyon) both 
grew better under salt and drought stress than 
control plants, and the composition of the plant 
cell walls returned to nearly normal following the 
application of helpful endophytic bacteria.109, 110 
Additionally, the plants treated with rhizobacteria 
which produce ACC deaminase, preserve the 
composition of the plant’s cell wall under stress 
closer to typical plants. 
 Additionally, one of the main agricultural 
issues affecting crop output in the majority of 
the world’s arid and semiarid regions is drought 
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stress. This type of abiotic stress impacts the 
interactions between plants and water at both 
the cellular and systemic levels, leading to both 
particular and generalized reactions and damage. 
Exopolysaccharide (EPS), which bacteria produce, 
protects microorganisms from water stress 
by improving water retention and controlling 
the diffusion of organic carbon sources.111-114 
This allows bacteria to survive under stressful 
conditions. Due to the participation of a network 
of fibrillar material that firmly bonds the bacteria 
to the root surface, EPS also aids microorganisms in 
irreversibly attaching and colonizing the roots.115,116 
Plants living in arid or semiarid locations may be 
more resilient to drought if native, advantageous 
bacteria are used to inoculate the plants with 
ACC deaminase. In order to best aid plants under 
drought stress, we thus made an effort to extract 
and characterize EPS and ACC deaminase from 
drought-tolerant Pseudomonas strains from 
cropped soils of various arid and semiarid natural 
settings.

CONCLUSION

 A series of morphological, physiological, 
biochemical and molecular changes in plants 
are induced by abiotic stress which negatively 
affecting the plant growth and productivity and 
the mechanisms essential for plant survival are 
in conjunction with significant changes in the 
patterns of metabolites and proteins, hence the 
use of certain bacteria in order to increase stress 
tolerance and to develop plant protectants against 
stress is needed. Also, plants create ACC under 
stressful growth conditions, which inhibits plant 
growth and development. However, the presence 
of ACC deaminase activity in bacteria that promote 
plant growth is thought to be the primary 
mechanism underlying the bacterial stimulation 
of plant growth. To face the challenges caused 
by global population growth and climate change, 
plant growth-promoting bacteria are among 
the main interacting factors of stress tolerance 
and are often a magic solution to enhance plant 
growth through the increasing of nutrient uptake, 
secreting siderophore, solubilizing phosphate, and 
preventing the growth of plant pathogens. Thus, a 
priority task is to explore the activity of different 

bacteria with wide stress tolerance to enhance 
plant growth and development.
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