Chandra et al | Article 8748 J Pure Appl Microbiol. 2023;17(3):1893-1906. doi: 10.22207/JPAM.17.3.55 Received: 04 June 2023 | Accepted: 26 August 2023 Published Online: 03 September 2023

RESEARCH ARTICLE

Drug Target Identification for *Listeria monocytogenes* by Subtractive Genomics Approach

Niharika Chandra¹, Tabish Qidwai¹ and Sachidanand Singh^{1,2*}

¹Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India. ²Department of Biotechnology, Smt. S.S. Patel Nootan Science & Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India.

Abstract

We discover essential enzymes catalyzing critical metabolic reactions as potential drug targets, which may help to fight Listeria infections and their associated secondary infections extensively and effectively. A comparative metabolic pathway approach has been applied to identify and determine putative drug targets against Listeria monocytogenes. For this, enzymes unique to pathogenic pathways of L. monocytogenes EGD-e were determined using the KEGG database. They were further refined by selecting enzymes with sequences non-homologous to the host Homo sapiens and analysing their essentiality to the pathogen's survival. We report 15 essential pathogen-host non-homologous proteins as putative drug targets that can be exploited for development of specific drug targets or vaccines against multidrug resistant strains of L. monocytogenes. Finally, four essential enzymes from the pathogen: UDP-N-acetylglucosamine 1-carboxyvinyltransferase, Acetate kinase, Phosphate acetyltransferase, and Aspartate kinase were reported as novel putative targets for vaccine and drug development against L. monocytogenes infections. Unravelling novel target proteins and their associated pathways by comparing metabolic pathway analysis between L. monocytogenes EGD-e and host H. sapiens, develops the novelty of the work towards broad spectrum putative drug targets. This research design yields putative drug target critical enzymes that turn out to be fatal to the pathogen without interacting with the host machinery.

Keywords: *Listeria monocytogenes* EGD-e, *Homo sapiens*, Comparative Metabolic Pathway Analysis, Critical Enzymes, Novel Putative Drug Targets

*Correspondence: drsachinbioinfo@gmail.com

Citation: Chandra N, Qidwai T, Singh S. Drug Target Identification for *Listeria monocytogenes* by Subtractive Genomics Approach. *J Pure Appl Microbiol.* 2023;17(3):1893-1906. doi: 10.22207/JPAM.17.3.55

© The Author(s) 2023. **Open Access**. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License which permits unrestricted use, sharing, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Journal of Pure and Applied Microbiology

INTRODUCTION

Humans are victim of a large number of microbial pathogens through infection in the respiratory tract, gastrointestinal tract, or genital tract epithelium. These pathogens further migrate to secondary locations through lymph and blood to cause diseases in the liver, spleen, bones, and central nervous system (CNS).¹ Listeria monocytogenes is a Gram-positive, rod-shaped, foodborne pathogenic bacterium that is associated with listeriosis, CNS infection, meningitis, sepsis, liver infection, spleen infection and premature birth/ abortions.^{2,3} It is also associated with immune response based diseases like Rheumatoid Arthritis (RA) and Inflammatory Bowel Disease (IBD).⁴⁻⁶ L. monocytogenes has been found proliferating in colon of a patient suffering from IBD, much higher than in a healthy individual. Resistant biofilms of Listeria have been reported on all forms of synthetic and biological surfaces, including gut epithelium.^{7,8} L. monocytogenes enters the human host through the ingestion of contaminated food and reaches the intestine. It crosses the intestinal epithelial barrier and enters the bloodstream, from where it causes secondary infection in several organs such as liver, spleen, bones, brain etc.² In South Africa, 978 people were found positive for listeriosis infection which led to 674 hospitalizations and 183 deaths were recorded in 2018.9 Listeriosis outbreaks due to food borne infections have been recorded regularly in Turkey.¹⁰ 1,763 cases of listeriosis from 27 states were recorded by European Food Safety Authority (EFSA) in 2013, leading to 191 deaths.¹¹ The fatality rate of listeriosis is about 20-30% among various parts of the world in 2018-19.12-14 The current treatment of such Listeria infections depends on the use of antibiotics, which turn out to be ineffective and have risks of developing drug-resistant strains. At first, the most common treatment for Listeria infections was administration of antibiotics such as penicillin G and/or ampicillin along with aminoglycoside such as gentamicin or kanamycin. Subsequently, a combination of trimethoprim and a sulphonamide was also used as a therapy.^{3,15} Initially, the majority of the L.monocytogenes strains (isolated from various sources) were susceptible to antibiotics, active against the Gram positive bacteria. The

first drug resistance was observed against the antibiotic tetracycline in 1988.^{16,17} A multidrug resistant strain of L. monocytogenes was also isolated in France in 1988.^{16,17} Consequently, several multidrug resistant strains of Listeria have been discovered from environment, food sources and human listeriosis gut/stool samples.^{17,18} L. monocytogenes strains isolated from several food items (including ready-to-eat food) were reported to be resistant to several antibiotics such as ampicillin, clindamycin, nalidixic acid, penicillin (100%) and oxacillin (94.1%).¹⁹ The indiscriminate use of effective antibiotics in humans and animals has resulted in an exposure to high concentrations of these antibiotics, leading to resistance development in pathogenic strains of Listeria through gene alterations and transposons.^{20,21} The infection of these multidrug resistant strains of L. monocytogenes through various food sources may pose a serious threat to public health.9 So, this research attempts to find enzymes catalyzing essential metabolic reactions as potential drug targets, which may help to fight L. monocytogenes infections and their associated secondary infections extensively and effectively.

The easy accessibility of human genome sequences, complete genome sequences of several human infecting pathogens, and availability of several computational tools for their in silico analysis helps us to identify biomarkers and potential drug targets to combat these pathogens. Among these, comparative metabolic pathway analysis interpretations involve the understanding of the organism's physiology, intracellular procedures, and networks, which can find the specific target molecules responsible for their survival, vital functions, or virulence. This can further be used to develop specific and effective drugs against the pathogens. Metabolic pathways illustrate how the bio-molecular units interact with each other to carry out the functions required for the survival, reproduction, and other organism-specific activities.²² Understanding the phenotype and function of organisms requires a detailed analysis of the metabolic pathways involved along with the study of single genes, as the expression of all the protein metabolites is a result of the action of enzymes catalyzing their interconversion. Proteins are the functional biomolecular element of the cell which converts

the genetic information into practical reality. They are involved in gene regulation, cell metabolism, transport of nutrients, signal transduction, and enzymatic catalysis. Hence, the pathogen-specific proteins/enzymes can be used as broad-spectrum potential drug targets against these pathogens.

In the present study, comparative metabolic pathway analysis was implied between L. monocytogenes EGD-e (Reference genome) and H. sapiens with the aim to select enzymes unique to L. monocytogenes EGD-e, which are non-homologous to host. These enzymes can work as putative targets for the development of drugs to eradicate these pathogen without interacting with the host machinery. These enzymes were further analysed for their essential role in survival of the pathogen. As targeting the critical enzymes turn out to be fatal to the pathogen and help developing broad-spectrum drugs. Different comparative genomics and transcriptomics studies and comparative proteomic analysis have been performed between different strains of L. monocytogenes or between different species of Listeria with diverse objectives, but unravelling novel target proteins and their associated pathways by comparing metabolic pathway analysis between L. monocytogenes EGD-e and host Homo sapiens, develops the novelty of the work towards broad spectrum putative drug targets.

MATERIALS AND METHODS

Metabolic Pathway Analysis of Pathogen and Host

Metabolic pathways of *L. monocytogenes* EGD-e and *H. sapiens* were retrieved from Kyoto Encyclopedia of Genes and Genomes (KEGG) database (https://www.genome.jp/kegg/).²³ A manual assessment was performed to classify common and unique metabolic pathways between host and pathogen. The metabolic pathways present in pathogen but missing in the host were categorized as unique pathways, whereas the pathways present in both the pathogen and host were categorized as common pathways. The enzymes from unique metabolic pathways, having a sanctioned Enzyme Commission number (EC number), were mapped, and their protein sequences were extracted from the National Centre for Biotechnology Information (NCBI) genome database.²⁴

Identification of Pathogen-Host Non-homologous Proteins

BLASTP²⁵ analysis (Protein-protein Basic Local Alignment Search Tool) was performed for protein sequences of enzymes from unique metabolic pathways against the *H. sapiens* proteome. The protein sequences with an e value cut-off of 5e-3 were considered as homologous to the pathogen and were excluded from the study. The protein sequences without a hit under this criterion were considered to have no significant homolog in *H. sapiens* and selected for further analysis.²⁶

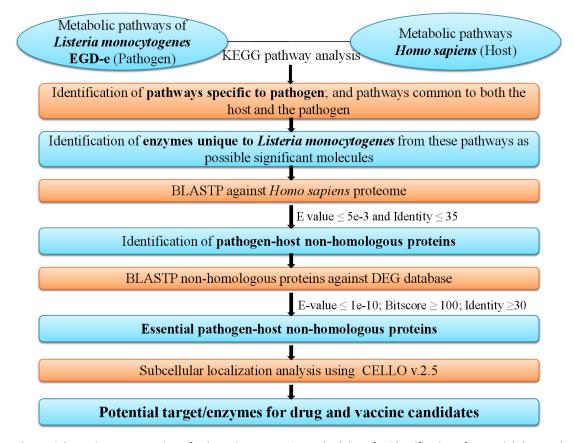
Identification of Essential Pathogen-Host Nonhomologous Proteins

BLASTP analysis was performed between the obtained non-homologous protein sequences and prokaryotic essential genes from database of essential genes (DEG; http://www.essentialgene. org/) to yield essential pathogen-host nonhomologous proteins ²⁷. The criteria of essentiality are as follows: evalue < 1e-10, bit score \ge 100 and percentage identity \ge 30.²⁶

Subcellular Localization of Proteins

The exact position of these proteins in the cell was predicted using CELLO version 2.5 (subCELlular LOcalization predictor version 2.5).²⁸ CELLO applies the amino acid composition and di-peptide composition based on physicochemical parameters of amino acids to predict the subcellular position of the proteins.²⁸ The gram-positive bacterial proteins have the following localization sites: the cell membrane, the cytoplasm, the extracellular space and the cell wall.

Structural Classification of the Unique Identified Target Proteins


The predicted enzymes as drug targets were further analysed and classified for their three dimensional structure and presence of any best possible ligands in their binding pockets. The available structures of the predicted potential drug targets were retrieved and studied from the RCSB Protein Data Bank.²⁹ The research design for this study has been presented in Figure.

RESULTS AND DISCUSSION

KEGG Pathway Analysis Interpretations

KEGG database analysis revealed a total of 107 pathways associated with *L. monocytogenes* EGD-e. Most of these pathways were biosynthesis and metabolic pathways such as glycolysis, TCA cycle, carbohydrate metabolism, fatty acid biosynthesis and degradation, amino acid biosynthesis and degradation, nucleotide metabolism, peptidoglycan biosynthesis, vitamin metabolism, central dogma, nitrogen and sulfur metabolism etc. Also, other pathways associated with bacterial functions and virulence such as secondary metabolites biosynthesis, microbial metabolism in different environments, degradation of aromatic compounds, resistance to antibiotics such as vancomycin and beta-Lactam, cationic antimicrobial peptide (CAMP) resistance, quorum sensing, chemotaxis, NOD-like receptor signaling pathway, two-component system, and bacterial invasion of epithelial cells were reported (https:// www.genome.jp/kegg/).

H. sapiens have 337 reported pathways in the KEGG database. These pathways consist of the eukaryotic biosynthesis and metabolic pathways. They also have several pathways related to drug and xenobiotics resistance and metabolism, signalling pathways, apoptosis,

Figure. Schematic representation of subtractive genomics methodology for identification of potential drug and vaccine targets against *L. monocytogenes*. KEGG pathway analysis of metabolism for the pathogen (*L. monocytogenes*) and the host (*H. sapiens*) led to the subsequent identification of essential pathogen-host non-homologous enzymes/ proteins which can be targeted as possible drug/vaccine candidates. (KEGG: Kyoto Encyclopedia of Genes and Genomes; BLASTP: Protein-protein Basic Local Alignment Search Tool; DEG: Database of Essential Genes; CELLO v2.5: subCELlular LOcalization predictor version 2.5)

Table 1. List of metabolic pathways common to both the pathogen *Listeria monocytogenes* EGD-e and host Homo sapiens (KEGG: Kyoto Encyclopedia of Genes and Genomes)

S. No.	Metabolic pathway	KEGG pathway ID
1	Glycolysis / Gluconeogenesis	lmo00010
2	Citrate cycle (TCA cycle)	lmo00020
3	Pentose phosphate pathway	lmo00030
4	Pentose and glucuronate interconversions	lmo00040
5	Fructose and mannose metabolism	lmo00051
6	Galactose metabolism	lmo00052
7	Starch and sucrose metabolism	lmo00500
8	Amino sugar and nucleotide sugar metabolism	lmo00520
9	Pyruvate metabolism	lmo00620
10	Glyoxylate and dicarboxylate metabolism	lmo00630
11	Propanoate metabolism	lmo00640
12	Butanoate metabolism	lmo00650
13	Inositol phosphate metabolism	lmo00562
14	Oxidative phosphorylation	lmo00190
15	Nitrogen metabolism	lmo00910
16	Sulfur metabolism	lmo00920
17	Fatty acid biosynthesis	Imo00061
18	Fatty acid degradation	lmo00071
19	Synthesis and degradation of ketone bodies	Imo00072
20	Glycerolipid metabolism	lmo00561
21	Glycerophospholipid metabolism	Imo00564
22	Arachidonic acid metabolism	Imo00590
23	Purine metabolism	Imo00230
24	Pyrimidine metabolism	Imo00240
25	Alanine, aspartate and glutamate metabolism	Imo00250
26	Glycine, serine and threonine metabolism	Imo00260
27	Cysteine and methionine metabolism	Imo00270
28	Valine, leucine and isoleucine degradation	Imo00280
29	Valine, leucine and isoleucine biosynthesis	Imo00290
30	Lysine degradation	lmo00310
31	Arginine biosynthesis	lmo00220
32	Arginine and proline metabolism	Imo00330
33	Histidine metabolism	Imo00340
34	Tyrosine metabolism	Imo00350
35	Phenylalanine metabolism	Imo00360
36	Tryptophan metabolism	Imo00380
37	Phenylalanine, tyrosine and tryptophan biosynthesis	
38	beta-Alanine metabolism	Imo00410
39	Taurine and hypotaurine metabolism	Imo00430
40	Phosphonate and phosphinate metabolism	Imo00440
40	Selenocompound metabolism	Imo00450
42	D-Glutamine and D-glutamate metabolism	lmo00471
43	D-Arginine and D-ornithine metabolism	Imo00472
44	Glutathione metabolism	Imo00480
45	Other glycan degradation	lmo00511
46	Thiamine metabolism	lmo00730
47	Riboflavin metabolism	Imo00740
48	Vitamin B6 metabolism	lmo00750
49	Nicotinate and nicotinamide metabolism	lmo00760

Chandra et al | J Pure Appl Microbiol. 2023;17(3):1893-1906. https://doi.org/10.22207/JPAM.17.3.55

Table	1.	Cont
-------	----	------

S. No.	Metabolic pathway K	EGG pathway ID
51	Biotin metabolism	lmo00780
52	Lipoic acid metabolism	lmo00785
53	Folate biosynthesis	lmo00790
54	One carbon pool by folate	lmo00670
55	Porphyrin and chlorophyll metabolism	lmo00860
56	Ubiquinone and other terpenoid-quinone biosynthesi	s lmo00130
57	Terpenoid backbone biosynthesis	lmo00900
58	RNA polymerase	lmo03020
59	Ribosome	lmo03010
60	Aminoacyl-tRNA biosynthesis	lmo00970
61	Protein export	lmo03060
62	Sulfur relay system	lmo04122
63	RNA degradation	lmo03018
64	DNA replication	lmo03030
65	Base excision repair	lmo03410
66	Nucleotide excision repair	lmo03420
67	Mismatch repair	lmo03430
68	Homologous recombination	lmo03440
69	ABC transporters	lmo02010
70	NOD-like receptor signaling pathway	lmo04621
71	Bacterial invasion of epithelial cells	lmo05100

muscle contraction, platelet activation, circadian cycle, hormone secretion and immune responses. A number of pathways were specifically related to diseases and infections such as Alzheimer disease, Parkinson disease, Huntington disease, prion diseases, drug addiction, *Vibrio cholerae* infection, Pathogenic *Escherichia coli* infection, *Salmonella* infection, malaria, tuberculosis, pathways in cancer, asthma, inflammatory bowel disease, and rheumatoid arthritis etc (https://www.genome.jp/ kegg/).

The comparative metabolic pathway analysis using the KEGG database resulted in 28 pathways that were unique to the pathogen *L. monocytogenes* EGD-e, whereas 71 pathways, common to both *L. monocytogenes* EGD-e and *H. sapiens* (Table 1 and Table 2 respectively). A total number of 180 enzymes with valid EC numbers were identified from the unique pathogen pathways (Supplementary Table 1).

Determination of Essential Pathogen-Host Nonhomologous Proteins

The unique pathogen enzymes were then compared with host proteome to identify host non-homologous proteins. Out of 180 enzymes, 120 enzyme sequences revealed d" 35% identity with human proteome, and 52 enzyme sequences did not show any hit against the human proteome (Supplementary Table 2). Enzymes which are unique to *L. monocytogenes* and also do not show any or significant homology to the host proteome may act as effective drug targets as these drug/ vaccine candidates have reduced risk of any unwanted interaction with the host proteins. Hence, these drugs will be safe and not adversely affect the human host metabolism.

Essential genes are the least number of genes which are obligatory for the existence of any organism.³⁰ Essential genes determined for 48 bacterial species have been listed in DEG. This essential genes list can be directly extracted and BLAST analysis can be performed. Alternatively, a common list of prokaryotic essential genes can be used for analysis of other organisms which are not listed in DEG, as performed in this study (DEG; http://www.essentialgene.org/). The knockout of any bacterial essential gene can produce lethal phenotypes, so essential genes may act as significant drug targets.³¹ This can also be exploited for development of specific drug targets or vaccines against multidrug resistant strains such

S.No.	Metabolic pathway	KEGG pathway ID	No. of proteins	
1	C5-Branched dibasic acid metabolism	lmo00660	7	
2	Methane metabolism	lmo00680	17	
3	Secondary bile acid biosynthesis	lmo00121	2	
4	Lysine biosynthesis	lmo00300	17	
5	Cyanoamino acid metabolism	lmo00460	5	
6	D-Alanine metabolism	lmo00473	5	
7	Peptidoglycan biosynthesis	lmo00550	16	
8	Polyketide sugar unit biosynthesis	lmo00523	4	
9	Carbapenem biosynthesis	lmo00332	2	
10	Monobactam biosynthesis	lmo00261	6	
11	Streptomycin biosynthesis	lmo00521	7	
12	Acarbose and validamycin biosynthesis	lmo00525	2	
13	Novobiocin biosynthesis	lmo00401	3	
14	Benzoate degradation	lmo00362	3	
15	Aminobenzoate degradation	lmo00627	3	
16	Chloroalkane and chloroalkene degradation	lmo00625	1	
17	Xylene degradation	lmo00622	2	
18	Styrene degradation	lmo00643	3	
19	Naphthalene degradation	lmo00626	1	
20	Phosphotransferase system (PTS)	lmo02060	58	
21	Bacterial secretion system	lmo03070	3	
22	Two-component system	lmo02020	26	
23	Quorum sensing	lmo02024	12	
24	Bacterial chemotaxis	lmo02030	2	
25	Flagellar assembly	lmo02040	1	
26	beta-Lactam resistance	lmo01501	3	
27	Vancomycin resistance	lmo01502	6	
28	Cationic antimicrobial peptide (CAMP) Resistance	lmo01503	6	

Table 2. List of metabolic pathways which are unique to the pathogen Listeria monocytogenes EGD-e (KEGG: Kyoto Encyclopedia of Genes and Genomes)

as *L. monocytogenes.* Some essential genes may be conserved over a number of related species and are potential targets for development of broad spectrum antibiotics.^{27,31} Hence, 172 host-nonhomologous enzyme sequences were analyzed for essentiality of *L. monocytogenes* using DEG. 98 enzymes were found to be essential enzymes of *L. monocytogenes* with an average identity of 49% to essential protein sequences of prokaryotes (Supplementary Table 3).

Subcellular Localization of Target Enzymes/ Proteins

Subcellular localization of these enzymes was determined by CELLO v.2.5, which may provide important information about the function of protein. The bacterial proteins/enzymes present in Gram-positive bacterial dataset are mostly localized in the cytoplasm and the cell membrane. Rest of the proteins are localized in the extracellular space and very few are found at the cell wall.³² CELLO categorized our essential host non-homologous enzymes of *L. monocytogenes*, as presented in Supplementary Table 4.

Prediction of Potential Targets/ Enzymes for Drug and Vaccine Development

Out of the 52 non-homologous enzymes (with no identity match with *H. sapiens* proteome), 15 were recorded as essential enzymes for *L. monocytogenes* by DEG analysis with an average E value $\leq 1.4 e^{-23}$ and identity $\geq 47\%$. Further, we propose four *L. monocytogenes* enzymes as putative drug targets, completely non-homologous to human and critically important to survival of pathogen (with identity $\geq 60\%$ to the essential Chandra et al | J Pure Appl Microbiol. 2023;17(3):1893-1906. https://doi.org/10.22207/JPAM.17.3.55

Table 3. Potential drug target enzymes from Listeria monocytogenesEGD-e, showing their essential role in survival of the pathogen and non-homologous nature to host Homo sapiens. KEGG: Kyoto Encyclopedia of Genes and Genomes)

S.No.	<i>Listeria monocytogenes</i> EGD-e enzyme name	KEGG ID	Non homologous (Yes/No) and Percentage Identity (%) to Homo sapiens	Essential (Yes/No) and Percentage Identity (%) to <i>Listeria monocytogen</i> esEGD-e	Sub-cellular localization
1	K00790 UDP-N- acetylglucosamine 1- carboxyvinyltransfera se [EC:2.5.1.7]	lmo:lmo2526	Yes 0%	Yes 72.55%	Cytoplasmic
2	K00925 acetate kinase [EC:2.7.2.1]	lmo:lmo1581	Yes 0%	Yes 71.61%	Cytoplasmic
3	K00625 phosphate acetyltransferase [EC:2.3.1.8]	lmo:lmo2103	Yes 0%	Yes 63.11%	Cytoplasmic
4	K00928 aspartate kinase [EC:2.7.2.4]	lmo:lmo1235	Yes 0%	Yes 61%	Cytoplasmic
5	K02760 PTS system, cellobiose-specific IIB component [EC:2.7.1.196 2.7.1.205]	lmo:lmo2373	Yes 0%	Yes 57.73%	Cytoplasmic
6	K02769 PTS system, fructose-specific IIB component [EC:2.7.1.202]	lmo:lmo0427	Yes 0%	Yes 57.29%	Cytoplasmic
7	K04041 fructose-1,6- bisphosphatase III [EC:3.1.3.11]	lmo:lmo0830	Yes 0%	Yes 51.85%	Cytoplasmic
8	K02799 PTS system, mannitol-specific IIB component [EC:2.7.1.197]	lmo:lmo2799	Yes 0%	Yes 50.11%	Membrane
9	K02777 PTS system, sugar-specific IIA component [EC:2.7.1]	lmo:lmo1017	Yes 0%	Yes 48.41%	Cytoplasmic
10	K00887 undecaprenol kinase [EC:2.7.1.66]	lmo:lmo1464	Yes 0%	Yes 46.4%	Membrane
11	K02755 PTS system, beta-glucoside- specific IIA component [EC:2.7.1]	lmo:lmo2772	Yes 0%	Yes 42.11%	Membrane
12	K00425 cytochrome bd ubiquinol oxidase subunit I [EC:7.1.1.7]	lmo:lmo2718	Yes 0%	Yes 41.45%	Membrane
13	K01624 fructose- bisphosphate aldolase, class II [EC:4.1.2.13]	lmo:lmo0359	Yes 0%	Yes 39.1%	Cytoplasmic
14	K00003 homoserine dehydrogenase [EC:1.1.1.3]	lmo:lmo2547	Yes 0%	Yes 38.26%	Cytoplasmic
15	K12555 penicillin- binding protein 2A [EC:2.4.1.129 3.4.16.4]	lmo:lmo2229	Yes 0%	Yes 33.22%	Membrane

prokaryotic sequences), as listed in Table 3. The nature and site of action of all these four enzymes was determined to be cytoplasmic. These enzymes tend to play a central role in the pathogenesis of *L. monocytogenes,* causing infections in humans.

U D P - N - a c e t y | g | u c o s a m i n e 1-carboxyvinyltransferase is an enzyme of class transferases that catalyzes the transfer of enolpyruvate group to UDP-*N*-acetyl- α -Dglucosamine which is a significant and committing reaction of cell wall formation in bacteria.³³ It belongs to 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase family and subfamily of MurA. This enzyme also substantially involved in other biological processes like cell division, cell wall cycle, cell wall organization, and cell shape regulation along with peptidoglycan biosynthetic pathway.^{33,34} (https://www.uniprot.org/).

Acetate kinase is involved in the acetyl-CoA biosynthesis pathway by catalyzing a subpathway reaction of phosphorylating acetate utilizing ATP and a divalent cation such as Mg²⁺ or Mn²⁺. The reaction is summarized as: acetate + ATP = acetyl phosphate + ADP. The reverse reaction can also be catalyzed by this same enzyme. It is also involved in some metabolic intermediate biosynthesis, such as the organic acid metabolic process (https://www.genome. jp/kegg/). It has also been reported that acetyl phosphate levels in L. monocytogenes are directly involved in monitoring cell motility, chemotaxis, and resistant biofilm formation. In a study, Gueriri and co-workers developed acetate kinase mutants of L. monocytogenes with a blocked synthesis of acetyl phosphate. These mutants were reported with a phenotype of decreased ability of biofilm formation and diminished expression of flagellar protein biosynthesis and motility genes.³⁵ Also, other studies have reported that some L. monocytogenes virulence factors such as VirR/ VirS can be activated by the production of acetyl phosphate in the cells.³⁶ The activity of acetate kinase has also been recorded in other pathogenic intestinal bacterial strains such as Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. These pathogen bacteria have been found to be involved in causing IBD in the human host.³⁷

The third drug target enzyme, phosphate acetyltransferase, shows transferase activity. Phosphate acetyltransferase, along with the subsequent action of acetate kinase, produces acetate from acetyl-CoA (or acetyl phosphate) and generates ATP.³⁸

The Aspartate kinase enzyme performs kinase activity, transferase activity, and binding of ATP by the reaction: ATP + L-aspartate = 4-phospho-L-aspartate + ADP. Aspartate kinase is involved in cellular amino acid biosynthetic pathways such as lysine biosynthesis via diaminopimelate (DAP) formation, homoserine biosynthesis, and threonine biosynthetic pathway ³⁹ (https:// www.uniprot.org/). These targets have not been used for drug/vaccine development to our best knowledge.

Other than these four novel drug targets, most of the other 11 enzymes have also been established as potential candidates for drug targets and have been reported in several other studies. Fructose-bisphosphate aldolase (FBA) class II, is a cytoplasmic or surface exposed bacterial enzyme catalysing the cleavage of fructose-1,6bisphosphate to D-glyceraldehyde-3-phosphate and dihydroxyacetone phosphate, an important reversible step in glycolysis and gluconeogenesis.⁴⁰ FBA is known to perform two or more unrelated functions in several bacterial species and hence is a moonlighting protein. FBA can play a significant role in binding to the host's cells and to host's proteins, subsequent generation of an immune response etc, and hence is involved in physiology and pathogenesis of the bacteria.⁴⁰ The structure and sequence of FBA remains conserved among same and different bacterial species, so it can be exploited to develop broad spectrum antibiotics/ vaccines against a wide group of pathogenic bacteria.⁴¹ Mendonca and coworkers reported FBA class II as a novel immunogenic surface protein and monoclonal antibody (mAb-3F8) against this protein for detection of the Listeria spp. and to distinguish *Listeria* from other pathogenic bacteria.42

The primary treatment for *L.* monocytogenes infected population is administration of β -lactam antibiotics (such as penicillins) which target a set of enzymes, the penicillin-binding proteins (PBPs) involved in peptidoglycan linking.⁴³ Our findings also report penicillin-binding protein 2A as a putative drug target. Peptidoglycan is a foremost element of the bacterial cell wall which is integral to the cell structure and morphology. Peptidoglycan biosynthesis involves the creation of mesh like structure, which is facilitated by two steps: transglycosylation (elongation of glycan chain) and transpeptidation (peptide cross-linking the flanking glycan chains).⁴⁴ High molecular weight Class A PBP catalyze both of these reactions through their N-terminal glycosyltransferase and C-terminal transpeptidase domain.⁴⁴ Another research which applied several *in silico* approaches such as subtractive genomics and protein—protein interaction network topology, reported PDB4 along with 10 other proteins as a putative drug target in *L. monocytogenes* EGD-e proteome.⁴⁵

We have also reported several phosphotransferase system (PTS) such as cellobiose-specific IIB component, mannitolspecific IIB component, fructose-specific IIB component, sugar-specific IIA component, and beta-glucoside-specific IIA component as putative drug targets. The PTS system is composed of a few soluble proteins and one membrane spanning protein, which are involved in the uptake/ transport of PTS carbohydrates by the cell.46 It has also been reported to be actively involved in several regulatory functions such as catabolite repression, potassium transport, nitrogen and phosphate metabolism, antibiotic resistance, endotoxin production, biofilm formation, and virulence of several pathogens including L. monocytogenes.⁴⁶ PTS mediated sugar transport of cellobiose, mannose, and glucose has been reported to regulate PrfA activity, which is in turn the major transcription factor regulating the virulence gene in L. monocytogenes.47 In a study based on comparative genomics of Vibrio cholera, several constituents of the PTS were described as drug and vaccine targets against the pathogen.⁴⁸ Similarly, six components of the PTS system were reported as putative drug targets in Klebsiella pneumoniae MGH78578 using the in silico approach.⁴⁹ Hence, the PTS system may act as an effective drug target for L. monocytogenes too.

Structural Classification of the Unique Identified Target Proteins

The available structures of the predicted potential drug targets were retrieved and studied from the RCSB Protein Data Bank.²⁹ The structures of the predicted drug targets were available on PDB either in L. monocytogenes or in other microbes. The minimum criteria for considering the three dimensional structure was on the basis of Identity >= 70%, Query coverage of the sequence as 80% and E Value <= 0.00. The crystal structure of PBP 4 from *L. monocytogenes* in the Ampicillin bound form (PDB ID: 3ZG8)⁵⁰ and PBP D2 from L. monocytogenes in apo form(PDB ID: 5ZQA)⁵¹ were accessible in PDB. Both these structures were studied in expression system of Escherichia coli. Several ligands such as (2r,4s)-2-[(1r)-1-{[(2r)-2-Amino-2-Phenylacetyl]amino}-2-Oxoethyl]-5,5-Dimethyl-1,3-Thiazolidine-4-Carboxylic acid, glycerol and Di(hydroxyethyl) ether have been reported to bind to the A and B chains of this enzyme. Structures for other drug target proteins were available for different other organisms. For instance, Apo structure of fructose 1,6-bisphosphate aldolase from Bacillus anthracis str. 'Ames Ancestor' (PDB ID: 3Q94) can be studied at PDB.⁵² This crystal structure was determined through X-ray diffraction experiment and the enzyme was found to be composed of A and B chains with two reported ligands (1,3-Dihydroxyacetonephosphate and acetate ion) interacting with the A chain of the protein. Similarly, the structure of Cytochrome BD-I ubiquinol oxidase from Escherichia coli (PDB ID: 6RX4) 53 and Homoserine Dehydrogenase from Saccharomyces cerevisiae (PDB ID: 1EBU) 54 were available. Two ligands (3-Aminomethyl-Pyridinium-Adenine-Dinucleotide and L-Homoserine) interacting with the D chain of the Homoserine Dehydrogenase enzyme and four ligands (Heme b/c, Cis-Heme d hydroxychlorin gamma-Spirolactone, 1,2-Dioleoyl-Sn-Glycero-3-Phosphoethanolamine, and Ubiquinone-8) binding with A and B chains of Cytochrome BD-I ubiquinol oxidase have been reported so far. Also, the structures of several enzymes reported as drug targets from the PTS system were retrieved for different organisms from PDB. Such as crystal structure of PTS System Cellobiose-specific Transporter Subunit IIB from *Bacillus anthracis* (PDB ID: 4MGE),⁵⁵ and structure of IIB domain of the mannitol-specific permease enzyme II from Escherichia coli (PDB ID: 1VKR)56 can be studied from PDB. The crystal structure of the fructose specific IIB subunit of PTS system was available for Bacillus subtilis (PDB ID: 2R48).57

Similarly, the closest structures available for sugarspecific IIA component and beta-glucoside-specific IIA component of the PTS system were studied from PDB. The details of all these structures including the classification, expression system, mutations, gene names and ligand interactions have been compiled in Supplementary Table 5.

Out of the four novel drug targets predicted, the structures of two enzymes: UDP-Nacetylglucosamine 1-carboxyvinyltransferase and phosphate acetyltransferase were available for L. monocytogenes.^{58,59} The crystal structure of UDP-N-acetylglucosamine 1-carboxyvinyltransferase (murA) from L. monocytogenes EGD-e (PDB ID: 3R38) was determined through X-ray diffraction experiments in the Escherichia coli BL21 expression system. Two ligands have been determined for this protein (Sulfate ion and Chloride ion) which bind to the chain A of the protein.⁵⁸ Similarly, the crystal structure of phosphate acetyl/butaryl transferase (from L. monocytogenes EGD-e) in complex with CoA (PDB ID: 3U9E) has been determined in Escherichia coli BL21(DE3) by X-ray diffraction studies. Four ligand molecules (Coenzyme A, Arginine, Glycerol, Chloride) have been known to interact with A and B chains of the protein⁵⁹ (Supplementary Table 5).

The structure for the third novel protein acetate kinase was found for the organism Salmonella enterica subsp. enterica serovar Typhimurium (PDB ID: 3SK3) in the RCSB Protein Data Bank. Citric acid and 1,2-Ethanediol ligands interact with the A and B chain of the enzyme.⁶⁰ Similarly, the structure for aspartate kinase was found for the organism Pseudomonas aeruginosa PAO1 (PDB ID: 5YEI) which was determined by X-ray diffraction in expression system Escherichia coli BL21(DE3). Three ligand molecules: Threonine, Lysine, and Glycerol are known to interact with the protein⁶¹ (Supplementary Table 5). Unpinning the structure categorization and identifying the inhibitors for these target proteins opened different methods of research towards drug design and reverse vaccinology approach.

CONCLUSION

The comparative metabolic pathway analysis approach of *L. monocytogenes-H. sapiens* resulted in four novel putative target proteins: UDP-

N-acetylglucosamine 1-carboxyvinyltransferase, acetate kinase, phosphate acetyltransferase, and aspartate kinase, which were very high in essentiality index with the pathogen and non-homologous nature with the host. Other 11 enzymes on the list are also significant putative drug targets and some of them have been reported by prior studies as well. The predicted potential drug target enzymes from L. monocytogenes will not interact with host machinery and also perform essential functions such as peptidoglycan biosynthesis, cell motility, chemotaxis, resistant biofilm formation, virulence, bacterial pathogenicity, amino acid biosynthesis, cell division, and cell wall organization. Therefore, drug development against these targets to combat L. monocytogenes infections will be very promising. Unravelling novel target proteins and their associated pathways by comparing metabolic pathway analysis between Listeria monocytogenes EGD-e and host Homo sapiens, develops the novelty of the work towards specific and broad spectrum putative drug targets. In addition to this, a detailed further analysis of these potent target proteins in terms of in-vivo and in-vitro approach will attain new and unique generation of biomolecules against the diseases caused by L. monocytogenes.

SUPPLEMENTARY INFORMATION

Supplementary information accompanies this article at https://doi.org/10.22207/JPAM.17.3.55

Additional file: Additional Table S1- S5.

ACKNOWLEDGMENTS

The authors would like to thank Faculty of Biotechnology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, India, for their support.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

AUTHORS' CONTRIBUTION

NC and SS designed the experiments. NC

performed the experiments. NC analyzed the data and wrote the manuscript. NC and TQ revised the manuscript. All authors read and approved the final manuscript for publication.

FUNDING

None.

DATA AVAILABILITY

All datasets generated or analyzed during this study are included in the manuscript and/or in the supplementary files.

ETHICS STATEMENT

Not applicable.

REFERENCES

- Clements A, Young JC, Constantinou N, Frankel G. Infection strategies of enteric pathogenic *Escherichia coli. Gut Microbes.* 2012;3(2):71-87. doi: 10.4161/ gmic.19182
- Radoshevich L, Cossart P. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol. 2018;16(1):32-46. doi: 10.1038/nrmicro.2017.126
- Farber JM, Peterkin PI. Listeria monocytogenes, a foodborne pathogen. Microbiol Rev. 1991;55(3):476-511. doi: 10.1128/mr.55.3.476-511.1991
- Miranda-Bautista J, Padilla-Suarez C, Bouza E, Munoz P, Menchen L, Marin-Jimenez I. *Listeria monocytogenes* infection in inflammatory bowel disease patients: case series and review of the literature. *Eur J Gastroenterol Hepatol.* 2014;26(11):1247-1252. doi: 10.1097/ MEG.0000000000000188
- Diaz-Dilernia F, Costantini J, Nicolino TI, Sanchez MDL, Carbo L. Unusual *Listeria monocytogenes* hematogenous infection in total knee replacement treated with one-stage revision surgery. *Arthroplast Today.* 2019;5(3):296-300. doi: 10.1016/j. artd.2019.06.005
- Arulmozhi S, Matchado MS, Snijesh VP, Kumar A, Singh S. An insight into anti-arthritic property OF C25H3407 for Rheumatoid arthritis using molecular modelling and molecular dynamics approach. *Informatics in Medicine Unlocked*. 2019;16:100145. doi: 10.1016/j. imu.2018.11.001
- Chiba M, Fukushima T, Koganei K, Nakamura N, Masamune O. *Listeria monocytogenes* in the colon in a case of fulminant ulcerative colitis. *Scand J Gastroenterol.* 1998;33(7):778-782. doi: 10.1080/00365529850171765
- Chen W, Li D, Paulus B, Wilson I, Chadwick VS. Detection of *Listeria monocytogenes* by polymerase chain reaction in intestinal mucosal biopsies from patients with inflammatory bowel disease and controls. *J Gastroenterol Hepatol*. 2000;15(10):1145-1150. doi: 10.1046/j.1440-1746.2000.02331.x

- Sanlibaba P, Tezel BU, Cakmak GA. Prevalence and Antibiotic Resistance of *Listeria monocytogenes* Isolated from Ready-to-Eat Foods in Turkey. *J Food Qual.* 2018;7693782 doi: 10.1155/2018/7693782
- Erol Z, Tasci F. Overview of Listeria Monocytogenes as a Foodborne Pathogen: Traditional Review. *Turkiye Klinikleri J Vet Sci.* 2021;12(1):37-48. doi: 10.5336/ vetsci.2020-78126
- Ricci A, Allende A, Bolton D, et al. Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU. *EFSA Journal*. 2018;16(1):e05134. doi: 10.2903/j.efsa.2018.5134
- 12. Zhang Y, Dong S, Chen H, et al. Prevalence, Genotypic Characteristics and Antibiotic Resistance of *Listeria monocytogenes* From Retail Foods in Bulk in Zhejiang Province, China. *Front Microbiol.* 2019;10:1710. doi: 10.3389/fmicb.2019.01710
- Li W, Bai L, Fu P, Han H, Liu J, Guo Y. The Epidemiology of *Listeria monocytogenes* in China. *Foodborne Pathog Dis.* 2018;15(8):459-466. doi: 10.1089/fpd.2017.2409
- Salama PJ, Embarek PKB, Bagaria J, Fall IS. Learning from *listeria*: safer food for all. *Lancet*. 2018;391(10137):2305-2306. doi: 10.1016/S0140-6736(18)31206-6
- 15. Lorber B. Listeriosis. *Clin Infect Dis*. 1997;24(1):1-11. doi: 10.1093/clinids/24.1.1
- Poyart-Salmeron C, Carlier C, Trieu-Cuot P, Courtieu AL, Courvalin P. Transferable plasmid-mediated antibiotic resistance in *Listeria monocytogenes*. *Lancet*. 1990;335(8703):1422-1426. doi: 10.1016/0140-6736(90)91447-1
- Charpentier E, Gerbaud G, Jacquet C, Rocourt J, Courvalin P. Incidence of antibiotic resistance in *Listeria* species. J Infect Dis. 1995;172(1):277-281. doi: 10.1093/infdis/172.1.277
- Abuin CMF, Fernandez EJQ, Sampayo CF, Otero JLI, Rodriguez LD, Saez AC. Susceptibilities of *Listeria* species isolated from food to nine antimicrobial agents. *Antimicrob Agents Chemother*. 1994;38(7):1655-1657. doi: 10.1128/AAC.38.7.1655
- Arslan S, Ozdemir F. Prevalence and antimicrobial resistance of *Listeria* species and molecular characterization of *Listeria monocytogenes* isolated from retail ready-to-eat foods. *FEMS Microbiol Lett.* 2020;367(4):fnaa006. doi: 10.1093/femsle/fnaa006
- Iwu CD, Okoh AI. Characterization of antibiogram fingerprints in *Listeria monocytogenes* recovered from irrigation water and agricultural soil samples. *PLOS ONE*. 2020;15(2):e0228956. doi: 10.1371/journal. pone.0228956
- Komora N, Bruschi C, MagalhTes R, Ferreira V, Teixeira P. Survival of *Listeria monocytogenes* with different antibiotic resistance patterns to food-associated stresses. *Int J Food Microbiol.* 2017;245:79-87. doi: 10.1016/j.ijfoodmicro.2017.01.013
- Oehm S, Gilbert D, Tauch A, Stoye J, Goesmann A. Comparative Pathway Analyzer—a web server for comparative analysis, clustering and visualization of metabolic networks in multiple organisms. *Nucleic Acids Res.* 2008;36(Suppl 2)):W433-437. doi: 10.1093/ nar/gkn284
- 23. Kanehisa M, Goto S, Kawashima S, Nakaya A. The

KEGG databases at GenomeNet. *Nucleic Acids Res.* 2002;30(1):42-46. doi: 10.1093/nar/30.1.42

- Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. *Nucleic Acids Res.* 2007;35 suppl 1:D61-65. doi: 10.1093/nar/gkl842
- Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res.* 1997;25(17):3389-3402. doi: 10.1093/nar/25.17.3389
- Sharma A, Pan A. Identification of potential drug targets in Yersinia pestis using metabolic pathway analysis: MurE ligase as a case study. *Eur J Med Chem.* 2012;57:185-195. doi: 10.1016/j.ejmech.2012.09.018
- Zhang R, Lin Y. DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. *Nucleic Acids Res.* 2009;37 suppl 1:D455-458. doi: 10.1093/nar/gkn858
- Yu CS, Lin CJ, Hwang JK. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. *Protein Sci.* 2004;13(5):1402-1406. doi: 10.1110/ps.03479604
- 29. Berman HM, Westbrook J, Feng Z, et al. The Protein Data Bank. *Nucleic Acids Res.* 2000;28(1):235-242. doi: 10.1093/nar/28.1.235
- Koonin EV. How many genes can make a cell: the minimal-gene-set concept. Annu Rev Genomics Hum Genet. 2000;1:99-116. doi: 10.1146/annurev. genom.1.1.99
- Luo H, Lin Y, Gao F, Zhang CT, Zhang R. DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements. *Nucleic Acids Res.* 2014;42 issue D1:D574-580. doi: 10.1093/nar/gkt1131
- Wang X, Zhang J, Li GZ. Multi-location gram-positive and gram-negative bacterial protein subcellular localization using gene ontology and multi-label classifier ensemble. *BMC Bioinformatics*. 2015;16(Suppl 12):S1. doi: 10.1186/1471-2105-16-S12-S1
- van Heijenoort J. Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat Prod Rep. 2001;18(5):503-519. doi: 10.1039/a804532a
- Machata S, Hain T, Rohde M, Chakraborty T. Simultaneous deficiency of both MurA and p60 proteins generates a rough phenotype in *Listeria* monocytogenes. J Bacteriol. 2005;187(24):8385-8394. doi: 10.1128/JB.187.24.8385-8394.2005
- 35. Gueriri I, Bay S, Dubrac S, Cyncynatus C, Msadek T. The Pta-AckA pathway controlling acetyl phosphate levels and the phosphorylation state of the DegU orphan response regulator both play a role in regulating *Listeria monocytogenes* motility and chemotaxis. *Mol Microbiol.* 2008;70(6):1342-1357. doi: 10.1111/j.1365-2958.2008.06496.x
- Mandin P, Fsihi H, Dussurget O, et al. VirR, a response regulator critical for *Listeria monocytogenes* virulence. *Mol Microbiol*. 2005;57(5):1367-1380. doi: 10.1111/j.1365-2958.2005.04776.x
- Kushkevych IV. Acetate kinase Activity and Kinetic Properties of the Enzyme in Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9 Intestinal Bacterial

Strains. Open Microbiol J. 2014;8:138-143. doi: 10.2174/1874285801408010138

- Kelly AF, Patchett RA. Lactate and acetate production in Listeria innocua. Lett Appl Microbiol. 1996;23(2):125-128. doi: 10.1111/j.1472-765X.1996.tb00046.x
- Chen NY, Jiang SQ, Klein DA, Paulus H. Organization and nucleotide sequence of the *Bacillus subtilis* diaminopimelate operon, a cluster of genes encoding the first three enzymes of diaminopimelate synthesis and dipicolinate synthase. *J Biol Chem.* 1993;268(13):9448-9465. doi: 10.1016/S0021-9258(18)98372-9
- Shams F, Oldfield NJ, Wooldridge KG, Turner DPJ. Fructose-1,6-bisphosphate aldolase (FBA)-a conserved glycolytic enzyme with virulence functions in bacteria: "ill met by moonlight." *Biochem Soc Trans.* 2014;42(6):1792-1795. doi: 10.1042/BST20140203
- Elhaik Goldman S, Dotan S, Talias A, et al. Streptococcus pneumoniae fructose-1,6-bisphosphate aldolase, a protein vaccine candidate, elicits Th1/Th2/Th17type cytokine responses in mice. Int J Mol Med. 2016;37(4):1127-1138. doi: 10.3892/ijmm.2016.2512
- Mendonca M, Moreira GMSG, Conceicao FR, et al. Fructose 1,6-Bisphosphate Aldolase, a Novel Immunogenic Surface Protein on *Listeria* Species. *PLoS ONE.* 2016;11(8):e0160544. doi: 10.1371/journal. pone.0160544
- 43. Nguyen UT, Harvey H, Hogan AJ, Afonso ACF, Wright GD, Burrows LL. Role of PBPD1 in stimulation of *Listeria monocytogenes* biofilm formation by subminimal inhibitory β -lactam concentrations. *Antimicrob Agents Chemother.* 2014;58(11):6508-6517. doi: 10.1128/AAC.03671-14
- Haenni M, Majcherczyk PA, Barblan JL, Moreillon P. Mutational analysis of class A and class B penicillinbinding proteins in *Streptococcus gordonii*. *Antimicrob Agents Chemother*. 2006;50(12):4062-4069. doi: 10.1128/AAC.00677-06
- 45. Sarangi AN, Lohani M, Aggarwal R. Proteome mining for drug target identification in *Listeria monocytogenes* strain EGD-e and structure-based virtual screening of a candidate drug target penicillin binding protein 4. *J Microbiol Methods*. 2015;111:9-18. doi: 10.1016/j. mimet.2015.01.011
- 46. Deutscher J, Ake FMD, Derkaoui M, et al. The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. *Microbiol Mol Biol Rev.* 2014;78(2):231-256. doi: 10.1128/MMBR.00001-14
- Mujahid S, Orsi RH, Boor KJ, Wiedmann M. Protein level identification of the *Listeria monocytogenes* sigma H, sigma L, and sigma C regulons. *BMC Microbiol.* 2013;13:156. doi: 10.1186/1471-2180-13-156
- Chawley P, Samal HB, Prava J, Suar M, Mahapatra RK. Comparative genomics study for identification of drug and vaccine targets in *Vibrio cholerae:* MurA ligase as a case study. *Genomics.* 2014;103(1):83-93. doi: 10.1016/j.ygeno.2013.12.002
- Georrge JJ, Umrania VV. In silico identification of putative drug targets in Klebsiella pneumonia MGH78578. Indian Journal of Biotechnology. 2011;10:

432-439

- Jeong JH, Kim YS, Rojviriya C, Ha SC, Kang BS, Kim YG. Crystal structures of bifunctional penicillin-binding protein 4 from *Listeria monocytogenes. Antimicrob Agents Chemother.* 2013;57(8):3507-3512. doi: 10.1128/AAC.00144-13
- Jeong JH, Cha HJ, Kim YG. Crystal Structures of Penicillin-Binding Protein D2 from *Listeria* monocytogenes and Structural Basis for Antibiotic Specificity. Antimicrob Agents Chemother. 2018;62(9). doi: 10.1128/AAC.00796-18
- Bank RPD. RCSB PDB 3Q94: The crystal structure of fructose 1,6-bisphosphate aldolase from *Bacillus anthracis* str. "Ames Ancestor." https://www.rcsb.org/ structure/3Q94. Accessed August 1, 2020.
- TheBeling A, Rasmussen T, Burschel S, et al. Homologous bd oxidases share the same architecture but differ in mechanism. Nat Commun. 2019;10(1):5138. doi: 10.1038/s41467-019-13122-4
- DeLaBarre B, Thompson PR, Wright GD, Berghuis AM. Crystal structures of homoserine dehydrogenase suggest a novel catalytic mechanism for oxidoreductases. Nat Struct Biol. 2000;7(3):238-244. doi: 10.1038/73359
- 55. Bank RPD. RCSB PDB 4MGE: 1.85 Angstrom Resolution Crystal Structure of PTS System Cellobiose-specific Transporter Subunit IIB from *Bacillus anthracis*. Accessed August 1, 2020. https://www.rcsb.org/ structure/4MGE

- Legler PM, Cai M, Peterkofsky A, Clore GM. Threedimensional solution structure of the cytoplasmic B domain of the mannitol transporter Ilmannitol of the Escherichia coli phosphotransferase system. J Biol Chem. 2004;279(37):39115-39121. doi: 10.1074/jbc. M406764200
- 57. Bank RPD. RCSB PDB 2R48: Crystal structure of the fructose specific IIB subunit of PTS system from *Bacillus subtilis* subsp. *subtilis* str. 168. Accessed August 1, 2020. https://www.rcsb.org/structure/2R48
- Bank RPD. RCSB PDB 3R38: 2.23 Angstrom resolution crystal structure of UDP-N-acetylglucosamine 1-carboxyvinyltransferase (murA) from *Listeria* monocytogenes EGD-e. Accessed July 20, 2020. https://www.rcsb.org/structure/3R38
- 59. Bank RPD. RCSB PDB 3U9E: The crystal structure of a possible phosphate acetyl/butaryl transferase (from *Listeria monocytogenes* EGD-e) in complex with CoA. Accessed July 20, 2020. https://www.rcsb.org/ structure/3u9e
- 60. Chittori S, Savithri HS, Murthy MRN. Structural and mechanistic investigations on *Salmonella typhimurium* acetate kinase (AckA): identification of a putative ligand binding pocket at the dimeric interface. *BMC Struct Biol.* 2012;12:24. doi: 10.1186/1472-6807-12-24
- 61. Li CC, Yang MJ, Liu L, et al. Mechanistic insights into the allosteric regulation of Pseudomonas aeruginosa aspartate kinase. *Biochem J.* 2018;475(6):1107-1119. doi: 10.1042/BCJ20170829