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Abstract
Antibiotic overuse in animal and human healthcare has led in the accumulation of potentially hazardous 
antibiotic residues, known as emerging contaminants. These residues contaminate animal products 
including meat, milk, and eggs, which humans then ingest. Furthermore, antibiotic residues from 
pharmaceutical firms, hospitals, and households reach wastewater treatment plants, providing an 
environment conducive to bacterial growth and dissemination. This, in turn, can result in the spread 
of antibiotic resistance genes (ARGs) among bacterial cells, posing serious threats to both human 
health and the environment. In the case of ARGs, conventional approaches for eliminating antibiotic 
residues from wastewater and aquatic habitats have proven ineffective. Recent study, however, has 
shown that the adsorption technique, particularly when low-cost and environmentally acceptable 
bioadsorbents such as sawdust, prawn shell waste, algae, and fungi are used, is highly successful 
in removing antibiotic residues. Bioadsorbents Microalgae, Terminalia catappa leaf, and siris seed 
pods, in particular, have shown outstanding removal efficiency for antibiotics such as tetracycline, 
dicloxacillin, and nitromidazole, reaching up to 98.74%. These investigations have shed insight on the 
fundamental principles of the adsorption process, revealing its ability to target ARGs and antibiotic-
resistant bacteria as well as remove antibiotic residues. As a result, addressing the issue of antibiotic 
residues in the environment has become critical in order to protect human health and prevent the 
spread of antibiotic resistance. Adsorption, particularly when bioadsorbents are used, appears to be a 
promising and efficient method of combating antibiotic residues and limiting the spread of antibiotic 
resistance genes and antibiotic-resistant bacteria in aquatic settings.
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INTRODUCTION

 Antibiotics play a crucial role in preventing 
and treating infectious diseases in both humans 
and animals, while also being widely present in 
the environment. Their use as growth promoters 
in livestock is well-documented.1-4 The most 
commonly prescribed antibiotic classes, including 
Beta-lactams, fluoroquinolones, tetracyclines, 
macrolides, sulfonamides, and cephalosporins, 
have been identified.5,6 Notably, there has been a 
significant 91% increase in antibiotic consumption 
from 1985 to 2021, with India and China exhibiting 
the highest consumption rates, primarily involving 
cephalosporins and tetracyclines7-10 (Figure 1). This 
surge can be attributed to population growth, rapid 
urbanization, and the emergence of infectious 
diseases.11 Tetracyclines are particularly prevalent 
in global animal production.12,13 Furthermore, the 
majority of administered antibiotics are excreted, 
contributing to their release and potential 
environmental impact. Proper disposal of unused 
or expired antibiotics is crucial to mitigate the 
environmental antibiotic burden.12 
 Antibiotic residues are found in various 
environmental hotspots such as sewage, 
hospitals, livestock farms, aquaculture farms, 
and pharmaceutical industries.14 These residues 
are detected in municipal waste effluents, 
surface water, groundwater, drinking water, 
soil, sediments, and even in sewage sludge and 
manure-filled soils.15 Residual antibiotics are also 
detected in sewage sludge; animal manure and 
manure-filled soils.15 The presence of antibiotics in 
the environment contributes to the development 
of antibiotic-resistant bacteria and genes, posing 
risks to human and animal health.16,17 Antibiotic-
resistant strains are increasingly prevalent.18 
Remediation of antibiotic residues in wastewater 
is crucial, and adsorption processes using 
specific adsorbents or bioadsorbents have been 
considered highly efficient for removing antibiotics 
from aqueous environments.19,20 Factors like 
pH, ionic strength, temperature, and organic 
matter influence the adsorption process, and 
the structure and functional groups of antibiotics 
play a significant role.19,21 Adsorption mechanisms 
involve intermolecular forces and interactions, 
making it a simpler and less time-consuming 
method for remediation.22,23 While adsorption is 

widely recognized as an important mechanism 
for antibiotic removal, further in-depth analysis is 
needed.23 Overall, understanding the adsorption of 
antibiotics and their residues can provide valuable 
insights into their interactions with adsorbents 
and bioadsorbents, contributing to effective 
wastewater treatment and pollutant reduction.

Occurrences of Antibiotic Residues
 Pharmaceutical, municipal, and hospital 
wastewater contain high concentrations of 
antibiotic residues.24-26 Antibiotics are essential 
components of modern medications used to treat 
infections caused by diverse bacteria.27 Overuse, 
improper usage, and discharge of antibiotics 
contribute to adverse environmental effects by 
facilitating their release into the environment.
 Antibiotic residues, including both mother 
compounds and metabolites, can accumulate in 
various cells, tissues, organs, and edible products, 
posing risks to human and animal health.28-30 
These residues are often detected in wastewater 
treatment plants (WWTPs) and subsequently 
discharged into water bodies, contributing to 
the dissemination of antibiotic-resistant bacteria 
and genes in the environment Sulfamethoxazole 
and ciprofloxacin, Diclofenac were the highest 
resistant antibiotics present in the municipal 
WWTP. 31,32,33 Environmental risk assessments have 
indicated that fluoroquinolones and macrolides 
pose potential risks to the environment and 
the development of antibiotic resistance.34 The 
accumulation of antibiotics and antibiotic-resistant 
microorganisms in plants, water, and the human 
gut is a concern associated with WWTPs.35,36 
Antibiotic residues in food and water can lead to 
various adverse effects, including the transmission 
of antibiotic-resistant bacteria, autoimmune 
diseases, cancer, reproductive disorders, and 
hepatotoxicity.37,38

 To address these issues, the development 
of new technologies and techniques for the 
efficient remediation of antibiotic residues in 
wastewater is necessary.36,39 Increased awareness, 
education, and responsible use of antibiotics are 
essential in preventing the spread of antibiotic 
residue pollution.40

 Rapid screening processes and the 
utilization of adsorption techniques can aid in 
monitoring and removing antibiotic residues from 
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wastewater.41 Overall, comprehensive strategies 
are needed to mitigate the environmental impact 
of antibiotic residues and promote safe water and 
food consumption.
 
Impact of antibiotic residues on environment, 
human & animal health
 Antibiotics, whether synthetic, natural, or 
semi-synthetic, possess the ability to kill bacteria 
or impede their growth.42 However, the presence 
of antibiotic residues in the environment, even 
at low concentrations, has raised concerns about 
the transmission of antibiotic resistance and 
adverse health effects, especially for vulnerable 
populations. 43,44

 Antibiotic residues in wastewater are 
classified as F-listed and K-listed pollutants, 
originating from pharmaceutical industries, 
hospitals, municipalities, and veterinary sources. 
17,45 These residues can accumulate in edible 
plant tissues, as plants lack excretory systems, 
potentially surpassing maximum residue limits,45 
therefore antibiotic residues accumulate in edible 
plant tissues and can exceed the normal Maximum 
Residue Limit (MRL) value. 
 Research has indicated that antibiotics 
possess genotoxic properties, as demonstrated 
by animal and microbial assays such as the SOS 
chromotest on Escherichia coli and the Ames 
test on Salmonella species.46 Higher plants and 
animal models like zebrafish have been employed 
to assess genotoxicity, revealing effects such 
as chromosomal aberrations, sister chromatid 
exchange, and micronucleus formation.34,47 Infact 
animal models such as zebrafish has also been 
used to test the genotoxicity of amoxicillin on 
the model animal zebra fish.48 Another research 
study has been conducted to determine the 
concentration of ceftriaxone antibiotic in raw and 
pasteurized cow milk and its toxicity on zebrafish 
model.49 In genotoxicity of antibiotic test some 
chromosomal aberrations, sister chromatid 
exchange, micronucleus formation and many 
more are clearly observed.48 For a well evidence, 
Florfenicol have shown growth inhibition in 
Lemna minor and Scenedesmus vacuolatus.50 
Chloramphenicol and Rifampicin have shown 
delayed cell growth of human stem cell.51 
Ceftriaxone and doxycycline have shown genotoxic 

as well as cytotoxic effect on human peripheral 
blood lymphocytes. Penicillin have shown lipid 
metabolism dysfunction in mice model.52

Development of Antibiotic Resistance
 Antibiotics are known as the wonder 
discoveries of the 20th century. The first discovery 
of wonder antibiotic penicillin has inspired many 
scientists for further studies and discoveries of 
more antibiotics for the treatment and prevention 
of bacterial diseases. But, now we all are wondering 
about the antibiotic resistance development in 
hospitals, the environment and in communities. 
Antibiotic-resistant bacteria are difficult or more 
precisely they are impossible to prevent and are 
becoming increasingly more common and thereby 
causing a global health crisis.53 New resistance 
genes are constantly identified and transmitted 
from one bacterial cell to another by exploiting 
new resistance mechanisms day by day.53 In 
recent studies, some researchers reported that 
human gut microbiome are the ultimate reservoir 
for potential dissemination of resistance genes 
from normal flora to pathogens and are termed 
as gut resistome.54 But the question is how this 
antibiotic resistance problem is rising day by day 
in the environment. Conventional mechanical and 
biological wastewater treatment are not able to 
remediate all pollutants completely, and therefore 
these pollutants enter into the surface water bodies 
along with treated wastewater. Consumption 
of these water contaminated with antibiotic 
resistance genes (ARGs), antibiotic resistance 
bacteria (ARB), antibiotic residues are ultimately 
transmitted within human and animal bodies.54-56 
These ARGs might be diffused extensively by 
Horizontal gene transfer (HGT)57 as shown in  
Figure 2. Transmission of these genes impacts the 
phenotype of bacteria and leads to the failure of 
drug treatments, thus threatening human health. 
Previous studies have revealed several kinds of 
ARGs in livestock farming such as, tetA, tetM, 
tetG (tetracycline resistance genes)58,59 (,sul1 and 
sul2 (sulfonamide resistance genes),59 ermB, ermF 
and mefA (macrolide resistance genes).53 These 
ARGs, are excreted with livestock feces, flow into 
the WWTP (wastewater treatment plant) and are 
finally discharged into the environment.60 
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Remediation of different of antibiotic residues 
by Bioadsorbents
 Several adsorbents and bioadsorbents 
have been studied for the effective removal of 
harmful antibiotic residues from wastewater. 
Different antibiotics exhibit varying adsorption 
mechanisms due to the involvement of distinct 
intermolecular interactions (Figure 3).

Tetracycline
 Tetracycline, a wide-spectrum antibiotic 
effective against both gram-positive and gram-
negative bacteria, poses a significant concern as its 
residues are frequently detected in various water 
systems, including surface water, groundwater, 
drinking water, and wastewater. Due to its 
incomplete metabolism and absorption in humans 
and animals, tetracycline residues persist in 
aquatic environments. 

Figure 1. Increase in antibiotic resistance percentage since 1985

Figure 2. Antibiotic resistance genes transmission mechanism among microorganisms via horizontal gene transfer
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 C o a g u l a t i o n ,  f l o c c u l a t i o n ,  a n d 
biodegradation are not efficient methods for 
eliminating oxytetracycline (OTC).61 Pumice 
stone was found to have a maximum adsorption 
capacity of 37.09 mg/g at pH 3, with surface 
complexation and cation exchange identified as 
the primary adsorption mechanisms.62 Water 
hyacinth roots exhibited a removal efficiency of 
58.9-84.6%.63 Ceramsite derived from bentonite, 
red mud, and pine sawdust demonstrated an 
adsorption capacity of 2.13 mg/g, attributed to 
electrostatic interaction, hydrophobic interaction, 
and hydrogen bonding .64 Electrostatic interaction, 
hydrophobic interaction, hydrogen-bonding were 
the main reasons for the adsorption mechanism 
in this study.64 Shrimp shell waste (SSW) as a 
bioadsorbent exhibited a maximum adsorption 
capacity of 229.98 mg/g at 55°C, with hydrogen 
bonds and pi-bonds formed between the antibiotic 
and SSW bioadsorbent at pH 3.3.65 Iron (III)-
loaded cellulose nanofibers showed a maximum 
adsorption capacity of 294.12 mg/g at pH 7, with 

surface complexation and interactions such as 
hydrogen bonding, electrostatic interactions, 
and Van der Waals forces.66 There are many 
more adsorbents and adsorbents involved in the 
remediation of tetracycline from the aqueous 
environment (Figure 4, Table 1). 

Dicloxacillin
 Dicloxacillin, a beta-lactam antibiotic 
belonging to the penicillin class, is widely used 
for treating infections caused by gram-positive 
bacteria by inhibiting bacterial cell wall synthesis. 
Tannin, a low-cost and suitable adsorbent, was 
employed for the adsorption of dicloxacillin from 
pharmaceutical wastewater. Tannin, a water-
soluble polyphenolic compound with a molecular 
weight range of 500 to several thousands dalton, 
was isolated from Terminalia catappa L. leaf 
samples67 as shown in Figure 5. The study focused 
on the remediation of dicloxacillin residues, 
and tannin exhibited a maximum adsorption 
capacity of 17.28 mg/g at pH 6.0 within 24 hours 

Table 1. Bioadsorbents for tetracycline remediation

Bioadsorbents/ Maximum Removal Desorption  Reference
adsorbents adsorption  efficiency efficiency & 
 efficiency  desorbing
   agents

Tectona grandis Linn. 62.5 mg/g 302.27 mg/g - 104 
Zirconium-modified  77.2 mg/g 87.7% 92.3%
wheat straw   Hydrogen 105 
   chloride 
   (HCl)
Pennisetum sinese Roxb 36.161 mg/g 80% 44.86 106
   mg/g HCl  
Fe-modified oyster shell 92% 89.9% HCl 107 
Pomelo peel derived 476.19 mg/g 454.56 mg/g KOH 98 
biochar
Rice husk ash 8.37 mg/g 60.93%  - 108 
Scenedesmus almeriensis 27.09 mg/g 98.7% 89%  109 
microalgae-bacteria   NaOH
consortium
Spirulina sp. (microalgae)- 147.9mg/g 137.8 mg/g 61% 110 
derived biochars
Water hyacinth 202.62 mg/g 210.45 mg/g - 111 
Human-hair derived high 210.18 mg/g 78.94% - 112
surface area porous carbon 
material
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Figure 3. General Mechanism of bioadsorption process for antibiotic residue remediation from aquatic environment

Table 2. Bioadsorbents for dicloxacillin remediation

Bioadsorbents/ Maximum Removal Desorption  Reference
adsorbents adsorption  efficiency efficiency & 
 efficiency  desorbing
   agents

Natural zeolite 1.072 mg/g 96.7% - 113 
Tannin from Terminalia catappa 17.28 mg/g 98.7% HCl 68
leaf

of contact time.68 Currently, only one study has 
been conducted on the adsorption of dicloxacillin, 
indicating the need for further research on 
the remediation of this antibiotic using other 
adsorbents(Figure 5, Table 2).68,69 So there is a need 
for further research on remediation of dicloxacillin 
by other adsorbents.

Ciprofloxacin
 Ciprofloxacin is a bactericidal antibiotic 
belonging to the subclass of Fluoroquinolones. It is 
used for the treatment of urinary tract infections, 
sexually transmitted diseases, skin infections, and 
bone infections, as approved by the FDA.70 These 
components are present in wastewaters due to the 
incomplete delivery to the consumer. Everyday, 
almost 84% of these residues get discharged as 
incomplete metabolic products in the mentioned 
wastewaters.70

 Remediation studies have investigated 
the use of different chemical and biological 

adsorbents. For example, activated carbon derived 
from banana stalk, an environmentally friendly 
bioadsorbent, exhibited a maximum monolayer 
adsorption capacity of 49.7 mg/g at pH 4.5 and 
323K through a physical adsorption mechanism71 
as shown in (Figure 6, Table 3). 

Meropenem
 Meropenem is a novel antibiotic used 
to treat severe infections of the skin, stomach, 
bacterial meningitis, pneumonia, sepsis, and 
intra-abdominal infections.72 Administered via 
intravenous infusion, meropenem is classified 
as an intravenous beta-lactam antibiotic and has 
been approved by the FDA for the prevention 
and treatment of complicated urinary tract 
infections.73,74,75 However, extensive use of 
meropenem has led to the development of 
resistance in most bacteria, posing challenges for 
its complete removal from wastewater treatment 
plants. As a result, residues find their way into 
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rivers, lakes, seas, and ultimately into drinking 
water and food sources.73,76 Another research 
study found that lignocellulosic bioadsorbents 
derived from sawdust waste exhibited a 92% 
removal efficiency for meropenem, which 
increased to 96% after post-treatment (Figure 
7, Table 4).77 Further research is needed due to 
the importance of meropenem as the last line of 
defense for treating severe bacterial infections.

Ceftazidime
 Ceftazidime is  a broad-spectrum 
bactericidal antibiotic from the third generation 
of cephalosporins, effective against many gram-
negative and some gram-positive bacteria. The 
presence of residues of ceftazidime and other 
antibiotics in aquatic environments has been linked 
to excessive production and usage, leading to 
concerns about the persistence and emergence of 
antibiotic resistance genes. Studies have identified 

Figure 5. Dicloxacillin adsorption from wastewater by using tannin as bio adsorbent

Figure 6. Ciprofloxacin adsorption from wastewater by using banana stalk as bio adsorbent

Figure 7. Meropenem adsorption from wastewater by using chemically modified saw dust as bio adsorbent

Figure 4. Tetracycline adsorption from wastewater by using shrimp shell waste biomass as bioadsorbent
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the presence of ceftazidime in pharmaceutical, 
hospital, and municipal wastewaters, highlighting 
the need for effective removal methods. Research 
has shown that the ceftazidime-tolerant green 
algae Chlorella pyrenoidosa can act as an efficient 
bioadsorbent, achieving a maximum adsorption 
capacity of 98.34%.43,78 The functional groups 
on the surface of the algal cells, such as amino, 
hydroxyl, and carboxyl groups, play a role in 

the adsorption mechanism. The dead algal cells 
exhibited a high removal efficiency of 99.20%, with 
electrostatic interactions and hydrogen bonding 
contributing to the process (Figure 8, Table 5).78

Sulfonamide
 Sulfonamides are generally the structural 
analogues of PABA (para-aminobenzoic acid) 
having distinct solubility level, excretion and 
absorption features.79 

Figure 8. Ceftazidime adsorption from wastewater by using microalgal biomass of Chlorella pyrenoidosa as bio 
adsorbent

Figure 9. Sulfonamide adsorption from wastewater by using Artemia sp. as bio adsorbent

Figure 10. Metronidazole adsorption from wastewater by using Chlorella vulgaris microalgal biomass as bio adsorbent

Figure 11. Cephalosporin-7-ACA adsorption from wastewater by using Chlorella sp. biomass as bio adsorbent
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 Chitosan has been identified as a reliable 
adsorbent for sulfonamide remediation due to its 
stability in high temperatures and pH ranges.80 
Adsorption mechanisms involve ionic-pi bonding, 
pi-pi interactions, and hydrogen bonding.81 Pine 
bark has shown good affinity for sulfadiazine, 
sulfamethazine, and sulfachloropyridazine, 
with up to 95% adsorption within 24 hours.80 
Carbonaceous materials like powdered activated 
carbon, wood-based granular activated carbon, 
and graphene exhibit 90-95% adsorption capacity 
within 5 hours at pH 4.0.82 Diatom Chaetoceros and 
arthropod Artemia have demonstrated adsorption 
of sulfonamides within 24 hours and 5 hours 
of contact time, respectively, at a temperature 
of 25°C and pH range of 5.0-8.083 as shown in  
Figure 9. Maximum adsorption capacities were 88% 
and 90%, respectively. Spent coffee grounds based 
on biochar and hydrochar showed adsorption 
capacities of 121.5μg/g and 130.1μg/g for biochar 

and 82.2μg/g and 85.7μg/g for hydrochar at 25°C.84 
Carboxyl-functionalized biochar derived from 
walnut shells exhibited 99% removal efficiency 
for sulfonamide, with involvement of hydrogen 
bonding and pi-pi interactions.85 Bioadsorbents 
demonstrated efficient adsorption of sulfonamide 
(Figure 9, Table 6).86

Nitroimidazole
 Nitroimidazole antibiotics are commonly 
used to treat anaerobic bacterial and protozoan 
infections, but they are frequently detected in 
wastewater treatment plants (WWTPs), drinking 
water, fish-farm waters, and industrial effluents.87 
These antibiotics are challenging to degrade due to 
their high polarity and are considered potentially 
carcinogenic and mutagenic.88 They can contribute 
to the dissemination and proliferation of antibiotic 
resistance genes (ARGs) in the environment, posing 
risks to human and animal health. Consequently, 

Table 4. Bioadsorbents for meropenem remediation

Bioadsorbents/ Maximum Removal Desorption  Reference
adsorbents adsorption  efficiency efficiency & 
 efficiency  desorbing
   agents

Lignocellulosic bioadsorbent 231.29 mg/g 96% 92.4% 121 
derived from sawdust waste
Rice husk functionalized with 43.5 mg/g - - 122 
Mg/Fe-layered double hydroxides

Table 3. Bioadsorbents for ciprofloxacin remediation

Bioadsorbents/ Maximum Removal Desorption  Reference
adsorbents adsorption  efficiency efficiency & 
 efficiency  desorbing
   agents

Dialium guineense seed waste 120.34 mg/g 87.6% - 114 
Wheat bran - 75% - 115 
Corn cob 13.76 mg/g 56.3% - 116 
Rice husk 2.33 mg/g 59.7% - 117 
photocatalytic hydrogel layer 93.5 mg/g - -  118 
supported on alkali modified 
straw fibers
Enteromorpha prolifera 21.7 mg/g 35.4% at 2.0 g/L - 119 
  bioadsorbent 
  dosage
Gibberella fujikuroi 39.17 mg/g 53.74% 76.57% 120
   NaCl
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the remediation of nitroimidazole antibiotic 
residues has become a significant concern for 
researchers. To facilitate practical application and 
separation, waste biomass-based adsorbents 
have been found to be more suitable than 
powdered biochar, as they are easier to recover 
and regenerate.89

 The adsorption mechanisms between 
the adsorbents and nitroimidazole antibiotics 
involve hydrogen bonding, pi-pi dispersion, and 
micropore filling87 as shown in Figure 10. A study 
assessed the combined use of microorganisms and 
activated carbon for nitroimidazole adsorption, 
demonstrating a maximum adsorption capacity 
of 2.04 mmol/g. However, the researchers 
observed that the microorganisms used in the 
biological stage of a wastewater treatment plant 
did not degrade nitroimidazoles. Nonetheless, the 
presence of microorganisms during the adsorption 
process enhanced the adsorption on activated 
carbon. Pi-pi dispersion interactions between 
carbon graphene layers and nitroimidazole 

aromatic rings played a crucial role, while electron-
activating groups in both the adsorbent and 
adsorbate initiated the adsorption process, and 
pH had no significant effect (Figure 10, Table 7).90

Cephalosporin 7 ACA
 Cephalosporin antibiotics are commonly 
used to treat bacterial diseases, but their residues 
in wastewater pose environmental risks. 7-amino 
cephalosporanic acid (7-ACA) is an intermediate 
residue in cephalosporin synthesis, exhibiting 
antibacterial activity due to its beta-lactam ring.91

 Guo et al. found that three microalgal 
strains isolated from Southern Taiwan (Chlorella 
sp., Chlamydomonas sp., and Mychonastes sp.) 
had adsorption capacities of 4.74 mg/g, 3.09 
mg/g, and 2.95 mg/g, respectively, at pH 7.5 and 
26°C.92,93 The adsorption mechanism involved 
monolayer and multilayer adsorption on the 
microalgae's heterogeneous surface. Activated 
carbon, previously used as an adsorbent, has 
regeneration issues. Cephalosporin 7-ACA showed   

Table 5. Bioadsorbents for ceftazidime remediation

Bioadsorbents/ Maximum Removal Desorption  Reference
adsorbents adsorption  efficiency efficiency & 
 efficiency  desorbing
   agents

Chlorella pyrenoidosa 98.4% - 87.6% NaOH 78 
Moringa oleifera 121.95 mg/g 87.65% - 123

Table 6. Bioadsorbents for sulfonamide remediation

Bioadsorbents/ Maximum Removal Desorption  Reference
adsorbents adsorption  efficiency efficiency & 
 efficiency  desorbing
   agents

Fe3O4-assisted extracellular 77.93% (SMX) 67.12% - 124
polymeric substances (EPS) 74.13% (SM1)
 65.62% (SM2)
 56.64% (SDZ)  

Fiber industry wastes 24.06 mg/g 48% - 125 
    
sulfonated coffee waste 256 mg/g - - 126 
Pectin derived from orange 120 mg/g 92.2% - 127 
peel biomass
Discarded biodiesel waste- 206.2 mg/g 138.8 mg/g 65.5%NaOH 128 
derived lignocellulosic biomass
Corncobs - 48% - 116 
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very good removal efficiency by  bio adsorbents 
(Figure 11 and Table 8).94 

Mechanism of Bio adsorption
 The adsorption process, traditionally 
considered exothermic, has been found to 
exhibit both exothermic and endothermic 
characteristics in recent research articles.95,96 
Adsorption can occur through two types: 
physisorption (physical  adsorption) and 
chemisorption (chemical adsorption). When 
bioadsorbents such as microalgae, macroalgae, 
fungi, bacteria, and medicinal plants are exposed 
to antibiotic-containing solutions, they exhibit 
various responses to survive and remediate the 
harmful antibiotic residues. 95 Among remediation 
techniques, adsorption is considered a reliable 
method for removing emerging contaminants 
from wastewater by binding the antibiotic 
residues to solid materials, such as adsorbents 
or bioadsorbents.65 Antibiotic adsorption by 
adsorbents like biochar, activated carbon, and 
nanomaterials primarily occurs through hydrogen 
bonds, hydrophobic bonds, electrostatic attraction, 
and Van der Waals forces.64

 The adsorption mechanism involves 
ion exchange, pi-pi bond interactions, functional 

groups and H-bond interactions, electrostatic 
interactions, pore filling, and intra-particle 
diffusion.97 Ion exchange maintains electrical 
neutrality between liquid and solid phases, while 
intra-particle diffusion and pore filling depend 
on specific surface area and pore size of the 
adsorbent.98 Surface adsorption, electrostatic 
interactions, hydrogen bonds, and hydrophobic 
interactions play significant roles in the adsorption 
of antibiotics.99 Various modifications of biochar, 
bacteria, plants, fungi, algae, and agricultural 
wastes can enhance their adsorption capabilities. 
Tetracycline is a extensively studied antibiotic, 
known for its broad-spectrum feasibility, polar 
functional groups (carboxyl and acyl-amino), 
while ciprofloxacin possesses non-polar functional 
groups.100

 The adsorption process offers unique 
advantages for the removal of antibiotic residues 
from wastewater. Tetracycline has been extensively 
studied in the research on remediation of 
antibiotics and their residues using adsorption 
techniques. The reason for focusing on tetracycline 
is its favorable response to various types of 
adsorbents and bioadsorbents. Adsorption 
technology provides several benefits, including 
low energy consumption, easy operation, and 

Table 7. Bioadsorbents for nitromidazole remediation

Bioadsorbents/ Maximum Removal Desorption  Reference
adsorbents adsorption  efficiency efficiency & 
 efficiency  desorbing
   agents

Siris seed pods 180.74 mg/g 98.74% - 129 
Prosopis juliflora 13.55 mg/g 17.45 mg/g - 130 
Rice husk 4.79 mg/g 96.4% - 131

Table 8. Bioadsorbents for cephalosporin 7-ACA remediation

Bioadsorbents/ Maximum Removal Desorption  Reference
adsorbents adsorption  efficiency efficiency & 
 efficiency  desorbing
   agents

Lipid-accumulating Chlorella sp.,  4.74 mg/g,  -   - 92
Chlamydomonassp., and 3.09 mg/g
Mychonastes sp 2.95 mg/g 
Pseudomonas putida 109.5 mg/g more than 89.7% HCl 132
  50%   
Activated olive stones 40.71 mg/g 65% - 133 
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no production of by-products or secondary 
pollutants. This process effectively eliminates 
harmful antibiotic residues, antibiotic resistance 
genes, and antibiotic-resistant bacteria present 
in wastewater. Numerous researchers have 
reported that the use of bioadsorbents makes 
the adsorption process more eco-friendly and 
cost-effective.19,101,102 The adsorption process 
demonstrates a short remediation period 
and has been proven to be the most efficient 
and effective method for removing antibiotic 
residues from wastewater due to its stability 
(Figure 4-11, Table 1-8).22 Bioadsorbents such 
as banana peel, Moringa oleifera, Pseudomonas 
putida, Saccharomyces cerevisiae, and other 
agricultural wastes have been identified as suitable 
options for adsorbing antibiotic residues from 
wastewater. These bioadsorbents are used in a 
dried form, eliminating the need for additional 
nutrients.96,98,103 Further studies are required to 
explore additional advantages of using this process 
for the remediation of antibiotic residues from 
wastewater.

CONCLUSION

 In conclusion, the use of bioadsorbents for 
removing antibiotic residues from wastewater has 
shown promising results. Different bioadsorbents, 
including raw shrimp shell waste, mussel shell, 
pine bark, oak ash, and tannin from Indian almond 
leaf, algae, fungi, bacteria have exhibited excellent 
adsorption capacities for specific antibiotic 
residues. The interactions between the functional 
groups of bioadsorbents and antibiotic residues, 
such as Van der Waals forces and hydrogen bonds, 
play a crucial role in the adsorption process. 
 This review highlights the need for 
further research and evaluation of various 
bioadsorbents to address antibiotic residues 
in wastewater. The adoption of eco-friendly 
adsorption techniques for treating wastewater 
from pharmaceutical, hospital, and municipal 
sources is gaining momentum. The development 
of new adsorbents and bioadsorbents holds 
significant promise, providing comprehensive, 
economic, social, and environmental benefits in 
water pollution control.
 Overall, this review serves as a valuable 
resource for researchers and practitioners 

engaged in the study and application of adsorption 
processes for the removal of antibiotic residues 
from wastewater. Continued exploration and 
advancement of adsorbent materials and 
techniques will contribute to more efficient and 
sustainable solutions in the future.
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