Prevalence of Beta Lactamase Nano Enzyme in Bacteria Isolated from Staff Hand (Isfahan-Iran)

Shila Jalalpour

Department of Food Industrial, Lecture of Microbiology, Islamic Azad University Shahreza Branch, Esfahan, Membership of Young Researchers Club. Islamic Republic of Iran, Esfahan.

(Received: 01 August 2011; accepted: 10 September 2011)

Spread of infecting organisms from patient to patient and hospital surfaces, is usually done by the nurses, doctors and others caring for the patient. The major method of spread is on contaminated hands. β-lactam antibiotics (Penicillin-Cephalosporin) have selective poisoning and effective to more Bacteria then are very important in cure of diseases. β-lactamase is virulence agent and causes resistance to these antibiotics. According rule of staff hand Bacteria in infection chain, transmission of β-lactamase producing Bacteria in patients, final due to β-lactam antibiotics resistance nosocomial infection in hospital. The subject of this study was survey prevalence of Beta lactamase nano enzyme in isolated bacteria from staff hand of AZZAhra Hospital in Iran. The present study was performed at one tertiary care hospitals in Isfahan, Iran. During a 24 month period (2007-2009) and 80 of bacteria isolated from staff hand were studied. Samples collected with finger print method. Standard microbiological methods were performed for detection of bacterial species and for determine β-lactamase production. The collected data was analyzed thorough SPSS version 14 software and Chi-square used for determination of significance of association. The p value 0.05 was considered significant. According to result, Staphylococcus spp. 28 (35%), Bacillus spp. 48 (60%) Enterobacteriaceae 4 (5%) consist of isolated bacteria. According result of acidimetric test from 80 isolated staff hands bacteria 61.9% of strains produce β-lactamase, respectively was in Staphylococcus spp., Bacillus spp. and Enterobacteriaceae 71%, 64.72% and 50%. Establish systems for monitoring antimicrobial resistance in hospitals and the community and link these findings to resistance and disease surveillance data is fundamental to developing treatment guidelines accurately and to assessing the effectiveness of interventions appropriately.

Key Words: β-lactame Antibiotics, β-lactamase, Staff Hand, Nosocomial Infection.
The staff hand would be considered one of a number of potential reservoirs for the pathogen, but not the de facto source of exposure. An understanding of how infection occurs after exposure, 4 based on the principles of the chain of infection is also important in evaluating the contribution of the environment to health-care–associated disease. All of the components of the chain must be operational for infection to occur: 1. Adequate number of pathogenic organisms (dose) 2. Pathogenic organisms of sufficient virulence 3. A susceptible host 4. An appropriate mode of transmission or transferal of the organism in sufficient number from source to host 5. The correct portal of entry into the host. Although microbiologically contaminated surfaces can serve as reservoirs of potential pathogens, these surfaces generally are not directly associated with transmission of infections to either staff or patients. The transferral of microorganisms from environmental surfaces to patients is largely via hand contact with the surface. The most important and frequent mode of transmission of nosocomial infections, is divided into two subgroups: direct-contact transmission and indirect-contact transmission. Direct-contact transmission involves a direct body surface-to-body surface contact and physical transfer of microorganisms between a susceptible host and an infected or colonized person. Direct-contact transmission also can occur between two patients, with one serving as the source of the infectious microorganisms and the other as a susceptible host, indirect-contact transmission involves contact of a susceptible host with a contaminated intermediate object, usually inanimate, such as contaminated instruments, needles, or dressings, or contaminated gloves that are not changed between patients and staff hands.

Total counts of bacteria on the hands of medical staff have ranged from 3.9×10^4 to 4.6×10^6. Their number increases with the duration of clinical activities, on average by 16 cells per min. Between 4 and 16% of the hand surface is exposed by a single direct contact, and after 12 direct contacts, up to 40% of the hand surface may have been touched. The transmissibility of transient bacteria depends on the species, the number of bacteria on the hand, their survival on skin, and the dermal water content. Duration of persistence on inanimate surfaces in *E. coli* is 2 h–16 months, in *Klebsiella* spp. is 2 h–30 months, in *S. aureus* is 4 wk–7 months, in VRE is 5 days–4 months, and in Spore-Forming Bacteria in vegetative cells are at least 24 h and spores survive for up to 5 months.

Antibiotic resistance can also be introduced artificially into a micro-organism through transformation protocols. This can be a useful way of implanting artificial genes into the microorganism, antibiotic resistance is a consequence of evolution via natural selection or programmed evolution. The antibiotic action is an environmental pressure; those bacteria which have a mutation allowing them to survive will live on to reproduce. They will then pass this trait to their offspring, which will be a fully resistant generation. The several main mechanisms by which micro-organisms exhibit resistance to antimicrobials are:

- Drug inactivation or modification: e.g. enzymatic deactivation of *Penicillin G* in some penicillin-resistant bacteria through the production of β-lactamases. Beta-lactam antibiotics are typically used to treat a broad spectrum of Gram-positive and Gram-negative bacteria. Beta-lactamases produced by Gram-negative organisms are usually secreted. Beta-lactamases are enzymes (EC 3.5.2.6) produced by some bacteria and are responsible for their resistance to beta-lactam antibiotics like penicillins, cephemycins, and carbapenems (ertapenem). (Cephalosporins are relatively resistant to beta-lactamase.) These antibiotics have a common element in their molecular structure: a four-atom ring known as a beta-lactam.

The lactamase enzyme breaks that ring open, deactivating the molecule’s antibacterial properties. Penicillinase is a specific type of β-lactamase, showing specificity for penicillins, again by hydrolysing the beta-lactam ring. Molecular weights of the various penicillinases tend to cluster near 50kD. Penicillinase was the first β-lactamase to be identified; it was first isolated by Abraham and Chain in 1940 from Gram-negative *E. coli* even before penicillin entered clinical use but penicillinase production quickly spread to bacteria that previously did not produce it or only produced it rarely. Penicillinase-resistant beta-lactams such as methicillin were developed, but there is now widespread resistance to even these.
The subject of this study was survey prevalence of Beta lactamase nano enzyme in isolated bacteria from staff hand of AZZAHRA Hospital in Iran.

Methods

Sampling

A total 80 bacteria from staff hand were isolated in Azzahra-hospital in Esfahan during of 2007-2009 years.

Staff hand samples, were randomly collected from staff hand and cultured in Blood Agar and EMB Agar (Merck) via Fingerprint Technique. Bacterial strains Identification Bacteria, were performed with microbiological methods e.g Gram stains, biochemical tests with the BioMerieux database system and use of differential medium. All of Specimen in firs step grows on sheep blood and EMB agars incubated at 37°C under aerobic conditions.

Detection Beta Lactamase

Acidimetric test is a Diagnostic test for the rapid detection of the β-lactamase in bacteria. This test is based on hydrolysis of the β-lactam ring, which results in the production of penicilloic acid. This process causes acidification of the bacterial suspension, and changes the colour of the acidobasic indicator phenol red. The result of the reaction is very fast. The red colour of this indicator is present negative test and The yellow color of this indicator is present positive test (Fig. 1).

![Acidimetric Method](image)

Fig. 1. Acidimetric Method

Results

According to result, Staphylococcus spp. 28 (35%), Bacillus spp. 48 (60%) Enterobacteriaceae 4 (5%) consist of isolated bacteria (Table 1). According result of acidimetric test from 80 isolated staff hands bacteria 61.9% of strains produce β–lactamase, respectively was in Staphylococcus spp., Bacillus spp. and Enterobacteriaceae 71%, 64.72% and 50% (Fig. 2).

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Enterobacteriaceae</th>
<th>Bacillus spp.</th>
<th>Staphylococcus spp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number / Percent</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>K.pneumoniae</th>
<th>E.coli</th>
<th>B.cereus</th>
<th>Bacillus sp</th>
<th>S.aureus</th>
<th>S.epidermidis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number / Percent</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
</tbody>
</table>

All the statistical analyses carried out using SPSS version 14. And Chi-square used for determination of significance of association. The pd > 0.05 was considered significant.
CONCLUSIONS

Result of this study show high frequency of antibiotic resistant strains on staff hand. Comparing the results obtained in this research with the results obtained in previously published articles that are similar to this research.

Result of this study demonstrate Staphylococcus spp. 28 (35%), Bacillus spp. 48 (60%) Enterobacteriaceae 4 (5%) consist of isolated bacteria.

According result the same previously study about bacterial epidemiology in hospitals in Iran Bacillus sp. and Staphylococcus sp. were the most bacterial that isolated from staff hand and hospital environment. Bacillus sp. and Staphylococcus sp. were the most bacterial that isolated from staff hand and hospital environment.

According result the same previously study about bacterial epidemiology in staff hand in other country demonstrate colonization of health care workers’ hands with S. aureus has been described to range between 10.5 and 78.3%. Up to 24,000,000 cells can be found per hand, the colonization rate with S. aureus was higher among doctors (36%) than among nurses (18%), as was the bacterial density of S. aureus on the hands (21 and 5%, respectively, with more than 1,000 CFU per hand). The carrier rate may be up to 28% if the health care worker contacts patients with an atopic dermatitis which is colonized by S. aureus. S. aureus can survive on hands for at least 150 min; VRE survives on hands or gloves for up to 60 min.

Colonization rates of gram negative bacteria on the hands of health care workers have been described as ranging from 21 to 86.1%, with the highest rate being found in ICUs. The number of gram negative bacteria per hand may be as large as 13,000,000 cells, the colonization may be long-lasting, even in nursing homes, a rate of 76% has been described for nurses hands. Different species of gram-negative bacteria exhibit different colonization rates, for instance, the colonization rate is 3 to 15% for Acinetobacter baumannii, 1.3 to 25% for Pseudomonas spp., and 15.4 to 24% for Serratia marcescens, Klebsiella spp. were found on the hands of 17% of the ICU staff sampled, with up to 10,000 bacteria per hand, most gram-negative bacteria survive on the hands for 1 h or more.

During a third outbreak, caused by Bacillus cereus in a neonatal ICU, 11 (37%) of 30 fingerprints from health care workers were positive for Bacillus spp.

Approximately one third of nosocomial infections are preventable, cleaning is the necessary first step of any sterilization or disinfection process, cleaning is removing organic matter, salts, and visible soils, all of which interfere with microbial inactivation. Modern infection control is grounded in the work of Ignaz Semmelweis, who in the 1840s demonstrated the importance of hand hygiene for controlling transmission of infection in hospitals, the importance of hands in the transmission of hospital infections has been well demonstrated and can be

Fig. 2. Frequency of Beta Lactamase in bacteria isolated from staff hand

minimized with appropriate hand hygiene15,12. Cleaning is the necessary first step of any sterilization or disinfection process. Cleaning is removing organic matter, salts, and visible soils, all of which interfere with microbial inactivation30-33. Hand washing frequently is called the single most important measure to reduce the risks of transmitting microorganisms from one person to another or from one site to another on the same patient. Although hand hygiene is important to minimize the impact of this transfer, cleaning and disinfecting environmental surfaces as appropriate is fundamental in reducing their potential contribution to the incidence of healthcare-associated infections15,12.

ACKNOWLEDGMENTS

This article was written according result of the thesis “Study Production of b-lactamase and Surface layer, Nano Structure in some of Isolated Pathogen Bacteria from Clinical and Environmental Hospital Samples”. This thesis has been introduced as the top country, microbiology thesis in 2009 defended among the defended thesis during of 2004 to 2008 years in Islamic Republic of Iran.

Authors would like their subspecialty Alzahra Hospital Management, Isfahan University, Management of science research lab of Isfahan university, journals manager of Isfahan University of Medical Sciences, Azzahra Hospital Infection control committee, Dr Roohaa Kasra Kermanshahi, Dr Ashraf Sadat Noohi, Dr Hamid Zarkesh Esfahani, Mr. Ardehsir Talebi, Mehrdad Memarzadeh, Kamyar Mostafavizadeh, Sinai Mobasherizadeh, Fariborz Kianpour, Mohsen Hosseini Balam, Ms. Kobra Maqsudi, Mr Ali Mehrabi and all persons help us in concert to achieve this research.

REFERENCES

28. Mansuri F, Banitabay Hematayar Sh. Overview of Bacterial Culture in Operations room in selective Hospital in Isfahan Medical science university(1384-85). The National Student Congress on The Role of Health Service Staff in Prevention of Hospital Infections, Iran-Isfahan Medical Science University, 2007:128.

