Detection of Campylobacter Species in Poultry Meat and Edible Offal's In Western Azerbaijan Province

Davoud Nassiri, Vadood Razavilar* and Abasali Motalebi

Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran.

http://dx.doi.org/10.22207/JPAM.10.4.21

(Received: 03 August 2016; accepted: 20 October 2016)

Campylobacter species are the most important pathogens that cause bacterial gastroenteritis being spread through food with animal origin. Given such fact, the current study aimed at evaluating Campylobacter phenotypic and genotypic outbreaks in chicken meat and its edible offal at West Azerbaijan province, Iran. To conduct the study, a total of 552 chicken samples including meat (138 samples), liver (138 samples), gizzard (138 samples) and hearts (138 samples) were randomly collected from poultry slaughterhouses at West Azerbaijan province from April 2014 to September 2014. Based on the culture tests, 208 samples (37/7%) were infected with Campylobacter species. The highest range of Campylobacter species outbreakswas observed in poultry liver (49/2%), followed by gizzard (42/8%), heart (33/3 %) and meat(25/4%). Among the isolated Campylobacter, the Jejuni type was the most prevalent (78/4%) and the rest were of Coli type (21/6%). All 208 species of Campylobacter isolated as Jejuni and Coli types from culturingwere also approved bymultiplex polymerase chain reaction test (m.PCR).A statistically significant difference (P <0.05) was observed in Campylobacter species outbreak in meat samples taken in summer (40/9%). The results of the study pinpointed to the chicken edible offal importance as a potential source of bacterial Campylobacter infections.

Keywords: Campylobacter, Poultry Meat, edible Offal's, Western Azerbaijan.

Campylobacteriosis, serving as an important common disease, shoulders a major role in infectious gastroenteritis in humans and is considered as the world's first cause of gastroenteritis followed by dysentery and diarrhea and other complications such as meningitis, Guillain Barre Syndrome and Cholecystitis^{18,1}

Digestive disorders and diarrhea caused by the bacterial Campylobacter is among the common illnesses primarily in developing countries, and 5 to 15 percent of diarrhea in these countries are instigated by the bacteria, and the prevalence of the bacteria as a cause of diarrhea in our country has been reported to be from 2 to 10 % (11), and even the primary cause of death in developed countries, especially among children under 5 in the United States, was attributed to such bacteriain that two million cases of bacterial infection are reported each year¹⁸.

The bacteria which was first discovered in the nineteenth century by Theodor Escherichia a gram-negative, spiral-shaped or curved, growing and multiplying at Microaerophilic conditions at a temperature of 42 ° C, and below 25 ° C, it stops growing and multiplying but does not disappear¹⁸. The thermophilic Campylobacter species, such as Jejuni and Coli, have an important role in the

^{*} To whom all correspondence should be addressed.

development of Campylobacteriosis becoming more prominent in the food infection as the spread of Campylobacter contamination in food has become very important in recent yearsgoingeven further than Salmonella ¹⁸. Studies show that the bacterium originates mainly from food with animal resource. Moreover, raw milk, meat and poultry, untreated surface water and edible fungi are the sources of infections with Campylobacteriosis disease being common in spring and summer. Infections with Campylobacter have been reported in several countries in broiler chickens, so that the bacteria survived during the slaughtering process and were transmitted to uninfectedpoultry organs¹⁸

Due to its high sensitivity and detection speed, thePCR method has the potentiality to determine if there is even a bacterium per ml and reaches the responsein a very short time. Many studies have examined the prevalence of the bacteria in meat and poultry as well as diarrheal samples¹⁵. The consumption of half-baked meat and the related products serves as the main source of human infection although other livestock meat and milk products are potential sources of the disease.There are reports on the prevalence of Campylobacter among live birds and animals and different kinds of food from all over the world revealing upon a wide range of results.

Previous reports highlighted the infection in chickens from zero to 100% which was up to 60% for the cows. The prevalence of the infection in poultry givento the market have been reported to be100% and lower incidences of other animals meat were also given^{7,22}. Although there are many studies casting light on the prevalence of Campylobacter species among poultry in Iran^{16,17,21,23} and other countries including Korea¹⁰, Japan²², Canada²⁴, Ireland ²⁵, Pakistan¹² Belgium⁹, little data existed on the poultry meat bi-products infection including liver, gizzard and heart in Iran, therefore, the study aimed atevaluating the contamination of these products.

MATERIALS AND METHODS

To conduct the study, a total of 552 samples including chicken meat (138 samples), liver (138 samples), gizzard (138 samples) and hearts (138 samples) were randomly collected from poultry

J PURE APPL MICROBIO, 10(4), DECEMBER 2016.

slaughterhouses at West Azerbaijan province from April 2014 to September 2014and were transferred to the laboratory for analysis aiming at investigating the presence of Campylobacter species in cold temperature.

To determine the phenotype of bacteria, 10 grams of the sample was added to abag with one hundred ml broth Preston (Preston enrichment broth base, himedia, Mumbai, India, m899) containing five percent defibrinated sheep blood for enrichment. The bags were incubated for 24 hours at 42 ° C in carbon dioxide presence. Then, the liquid in the bag was removed by a sterile loop and cultured on specific Campylobacter selective Agar (Himedia, Mumbai, India, m994) as a separate line to obtain single separated colonies. Then, it was incubated for 48 hours (Co2 10% v / v) at 42 $^{\circ}$ C. After the initial plate analysis, the suspected colonies were stained with Gram's stain and upon the curved bacteria resolution, the re-culturing was also applied. Upon obtaining the colonies, the biochemical tests including catalase, Indoxyl acetate hydrolysis were used and in order to differentiate between the two species Jejuni and Coli hippurate hydrolysis test was conducted, which was positive for Jejuni¹.

То investigate the Campylobactergenotypic, DNA extractionand Multiplex PCR method wereapplied. Using theculturing method and DNA extraction kit (Cina Gen, Iran), the confirmed colonies DNA were extracted according to the Kit manufacturer's instructions. The PCR test in this study followed Denis et al. (1999) procedure³ For PCR reaction, the reaction final volume of 25 microlitres was considered including 20 ng DNA template, 2 mM MgCl2, 25 pmol of each primer, a single Taq polymerase enzyme and 200 mM mixed dNTP. The size of PCR products corresponding to each sampleis given below. To confirm the presence of the multiplied sample, 20 microlitres of PCR was paced on electrophoresis with1/5 percent agarose gel containing ethidium bromide in the presence of 100 bp DNA marker in constant voltage of 80 volts.

RESULTS

The current study aimed at evaluating Campylobacter phenotypic and genotypic outbreaks in chicken meat and its edible offal at West Azerbaijan province, Iran. To conduct the study, a total of 552 samples including chicken meat (138 samples), liver (138 samples), gizzard (138 samples) and hearts (138 samples) were randomly collected from poultry slaughterhouses at West Azerbaijan province from April 2014 to September 2014 and were transferred to the laboratory for analysis aiming at investigating the presence of Campylobacter species in cold temperature.

Based on the culture tests, 208 samples (37/7 %) were infected with Campylobacter species. The highest range of Campylobacter species outbreaks was observed in poultry liver (49/2 %), followed by gizzard (42/8 %), heart (33/3 %) and chicken meat (25/4%). Among the isolated Campylobacter, the Jejuni type was the most prevalent (78/4 %) and the rest were of Coli type (21/6%). All 208 species of Campylobacter isolated as Jejuni and Coli types from culturing were also approved by multiplex polymerase chain reaction test (m.PCR). A statistically significant difference

(P <0.05) was observed in Campylobacter species outbreak in meat samples taken in summer (40/9 %). The results are presented in the following tables:

DISCUSSION

The given result shows 208 samples (37/ 7 %) were infected with Campylobacter species. Previous studies in Iran have reported the contamination level to the bacteria for different cities as Isfahan with 56/1 percent¹⁷, Shahrekord with 47 percent¹⁶, Tehran with 63/2% and 49/5%²¹ and Mashhad with 76 %⁸.

The outbreak of Campylobacter species in chicken meat in other countries also suggests a contamination level of 30 to 90 percent. The contamination levels in different countries were as follows: Turkey with92/8%²⁶, Korea with68/3%¹⁰, Canada with 62/4%²⁴, Japan with 60%²², Ireland with 49/90%²⁵ and Pakistan with 48%¹². Despite having many studies reporting the prevalence of

 Table 1. Sequences of primers used for detecting Campylobacter and the related Jejuni and Coli species

Type of product	Primer consequence	Gene
857bp for Campylobacter 16SrRNA	MD16S1 Upper Primer	
genus	3 ATC TAA TGG CTT AAC CAT TAA AC5	
C C	MD16S1 Lower Primer	
	3GGA CGG TAA CTA GTT TAG TAT T 5	
589bp for C.jejuni	MDmapA1 upper Primer	mapA
	3CTA TTT TAT TTT TGA GTG CTT GTG 5	
	MDmapA2 Lower Primer	
	3GCT TTA TTT GCC ATT TGT TTT ATT A5	
462bp for C.coli	COL3 Upper Primer	CeuE
	3AAT TGA AAA TTG CTC CAA CTA TG5	
	MDCOL2 Lower Primer	
	3TGA TTT TAT TAT TTG TAG CAG CG5	

Table 2. The contamination of chicken meat and its related edible offal to Campylobacter and its species

samplesnumberPositive Number and percentage of campylobacter infectionPositive Number and percentage of campylobacterPositive Number and percentage of campylobacter coli inMeat13835 (4/25%)32 (4/91%)3 (6/8%)	
$\frac{138}{35(4/25\%)} = \frac{32(4/91\%)}{32(6/8\%)}$	id infection
Liver 138 68 (2/49%) 61 (7/89%) 7 (3/10%)	
gizzard 138 59 (8/42 %) 53 (8/89 %) 6 (2/10 %)	
hearts 138 46 (3/33 %) 42 (3/91 %) 4 (7/8 %)	

J PURE APPL MICROBIO, 10(4), DECEMBER 2016.

Months	Number	Positive Number and percentage of campylobacter infection	Positive Number and percentage of campylobacter jejuni infection	Positive Number and percentage of campylobacter coli infection
March	92	29 (6/31%)	23 (3/79%)	6 (7/20%)
April	92	32 (8/34%)	25 (1/78%)	7 (9/21%)
May	92	34 (37%)	26 (5/76 %)	8 (5/23%)
June	92	35 (38%)	28 (80 %)	7 (20%)
July	92	37 (2/40%)	29 (4/78%)	8 (6/21%)
August	92	41 (6/44%)	32 (78%)	9 (22%)

 Table 3. Monthly contamination of chicken meat and its related edible offal to Campylobacter and its species

Table 4. The seasonal contamination of chicken meat and its related edible offal to Campylobacter and its species

Season	Number of samples	Positive Number and percentage of campylobacter infection	Positive Number and percentage of campylobacter jejuni infection	Positive Number and percentage of campylobacter coli infection
Spring summer Total	276 276 552	95 (4/34%) 113 (9/40%) 208 (7/37 %)	74 (9/77%) 89 (8/78%) 163(4/78%)	21 (1/22%) 24 (2/21%) 45 (6/21%)

Campylobacter species contamination in poultry, there are few studies highlighting on the edible offal contamination to the bacteria.

similar study conducted А byRahimiin2006 and 2008 casted light on the prevalence of Campylobacter in the chicken liver marketed in Isfahan. Accordingly, the contamination of 205 samples under study was reported to be 49/3%, and the livercontamination for the, chicken, turkey and ostrich were49/3%, 40% and / 16/7%, respectively¹⁷. Also, Shakerian et al (2004) in a study on evaluating the Campylobacter contamination in poultry liver in Shahrekord indicated that 259 samples of 400 samples (64/8%) were infected with Jejuni Campylobacter²⁰.

The report by Gafir *et al* (2007) suggests that contamination of broiler chicken liver distributed in Belgium capital from 1997 to1998was about68/7%. The chicken liver infection rate in 1997 and 1998 were 61/7% (74 from 120) and 74/6% (106 from 143)⁹. Sallam *et al* (2007) reported the contamination of meat and edible offal for chicken

J PURE APPL MICROBIO, 10(4), DECEMBER 2016.

from 40 to 77 for breast, thighs, wings, liver, gizzard and heart as64/4%, 70%, 77/1%, 64%, 45% and 40%, respectively¹⁹.

Suzuki andYammamato (2009) reported the contamination of chickenmeat, gizzard, liver and heart as 59%, 62/2%, 62/3% and 33/3, respectively²². In both studies similar to result of this study, the highest infection rates was in liver and the lowest was observed in heart. The reason could be due toliver greater contact area than the heart and its further manipulation. The differences between the results reported from different parts could be attributed to the poultry infection rates in difference in the killing and hygiene practices during different slaughtering phases, sampling seasons and sensitivity of testingmethods.

The results showed that among the isolated Campylobacter, the Jejuni type was the most prevalent (78/4 %) and the rest were of Coli type (21/6 %). Other studies have also shown that Jejuni type is the most common species in food withanimal origin^{6.8,12,16,17,22}. For example, in a study

by Hussain *et al* (2007) the prevalence of Campylobacter species (Jejuni and Coli)in food samples with animal origin was70/6% and 29/4%, respectively. The same study reported the prevalence of Jejuni and Coli Campylobacter in chicken as, 72% and 28%, in sheep meat as 65% and 35% and in cow meat as 79% and 21%, respectively¹².

Another similar study in 2004 was conducted in Ireland by Whyte *et al.* focusing on Jejuni and Coli Campylobacter in food with animal origin which revealed the fact that the contamination level for Jejuni and Coli type were 3804 and 16/6, respectively. The prevalence of bacteria in chicken as 6/84 and 6/16% have been reported²⁵.

Moreover, evaluating the Campylobacter contamination in poultry meat samples in different season showed there existed a significant difference in contamination level in summer (50/.> P) than in other seasons which was also confirmed by reports from other studies²⁴. Such high prevalence could be attributed to high temperature creating favorable conditions for thebacteria growth of and transferring of infection by insects.

The overall results of this study on chicken meat and its edible offal contamination to Campylobacter species showed that a relatively high number of samples especially the liver were infected with this pathogen. Therefore, in order to reduce contamination of chicken meat and its edible products to Campylobacter species and similar microorganisms, maintaining individual health, preserving sanitation in slaughterhouses, following HACCP principles in poultry chains, minimizing the carcasses contact with the edible offal, minimizing the chicken carcasses contact and maintaining the least manipulation and drinking water in slaughtering process seem to be the most important. Also, maintaining hygiene practices in splitting, packaging, and transportationstages and maintaining the cold condition in meat preserving chainuntil being delivered to consumer serve as very important measures in reducing meat contamination to such pathogens.

REFERENCES

1. Bolton F.J., Wareing D.R., Skirrow M.B. and Hutchinson D.N. Identification and biotyping of Campylobacter. In: Board G.R., Jones D. and Skinner F.A. (1992): Identification Methods in Applied and Environmental Microbiology. Society for Applied Microbiology, Technical Series 29Blackwell Scientific Publications, Oxford, pp:151-161

- Center for Disease Control and Prevention. 2002. Preliminary Food Net data on the incidence of food borne illnesses selected sites, United States. MMWR Morb Mortal Wkly Rep. 51: 325–329.
- 3. Denis M., Soumet C., Rivoal K., Ermel G., Blivet D., Salvat G., *et al.* Development of a m-PCR for simultaneous identification of *Campylobacter jejuni* and *C. coli. Letter of Applied Microbiology*, 1999; **29**: 406-410
- Dingle, K.E., Van Den Braak, N., Colles, F.M., Price, L.J., Woodward, D.L., Rodgers, F.G., Endtz, H.P, Van Belkum, A. and Maiden, M.C.J. Sequence typing confirms that Campylobacter jejuni strains associated with Guillain-Barre and Miller-Fisher syndromes are diverse genetic lineage, serotype and flagella type, *Journal of Clinical Microbiology*, 2001; **39**: 3346-3349.
- 5. Efrye R, Guandalini S, TM Akram. Diarrhea, Emedicine Journal. February. 2002, **3**(2); 1-23
- 6. Franchin P.R., Ogliari P.J. and Batista C.R.V. Frequency of thermophilic Campylobacter in broiler chickens during industrial processing in a Southern Brazil slaughterhouse. *British Poultry Science*, 2007; **48**: 127-132.
- Frederick A. and Huda N. Campylobacterin poultry: Incidences and possible control measures. *Research Journal of Microbiology*, 2011; 6: 182-192.
- Ghafir Y., China B., Dierick K., Dezutter L., Daube G. A seven-year survey of Campylobacter contamination in meat at different production stages in Belgium. *International Journal of Food Microbiology*, 2007; **116**: 111-120.
- Gonzalez I., Grant K.A., Richardson P.T., Park S.F. and Collins M.D. Specific identification of the enteropathogens Campylobacter jejuni and Campylobacter coli using PCR test based on the ceuEgene encoding a putative virulence determinant. *Journal of Clinical Microbiology*, 1997; **35**: 759-763.
- Han K., Jang S.S., Choo E., Heu S. and Ryu S. Prevalence, genetic diversity, and antibiotic resistance patterns of Campylobacter jejuni from retail raw chickens in Korea. *International Journal of Food Microbiology*, 2007; **114**: 50-59.
- Hassanzadeh P, Motamedifar M. Occurence of Campylobacter jejuni in Shiraz, Southwest Iran. *Med Princ Pract* 2007; 16(1):59-62.
- 12. Hussain I., Mahmood M.S., Akhtar M. and Khan

J PURE APPL MICROBIO, 10(4), DECEMBER 2016.

A. Prevalence of Campylobacter species in meat, milk and other food commodities in Pakistan. *Food Microbiology*, 2007; **24**: 219-222.

- Jamshidi A., Bassami M.R. and Farkhonddeh T. Isolation and identification of Campylobacterspp. and Campylobacter colifrom poultry carcasses by conventional culture method and multiplex PCR in Mashhad, Iran. Iranian Journal of Veterinary Research, 2008; 9: 132-137.
- 14. Kang Y.S., Cho Y.S., Yoon S.K., Yu M.A., Kim C.M., Lee J.O. *et al.* Prevalence and antimicrobial resistance of Campylobacter jejuni and Campylobacter coliisolated from raw chicken meat and human stools in Korea. *Journal of Food Protection*, 2006; **69**: 2915-23.
- 15. Mateo, E., Carcamo, J., Urquijo, M., Perales, I., Fernandez-Astorga, A. Evaluations of a PCR assay for the detection and identification of Campylobacter jejuni and Campylobacter coli in retail poultry products, *Research in Microbiology*, 2005; **156**: 568-574.
- Rahimi E. and Ameri M. Antimicrobial resistance patterns of Campylobacter spp. isolated from raw chicken, turkey, quail, partridge, and ostrich meat in Iran. *Food Control*, 2011; 22: 1165-70.
- 17. Rahimi E. and Tajbakhsh E. Prevalence of Campylobacterspecies in poultry meat in the Esfahan city, Iran. *Bulgarian Journal of Veterinary Medicine*, 2008; **11**: 257-262.
- Razavilar V.2002.Pathogenic Micriorganisms in Foods and Epidemiology Food Poisoning, University of Tehran Press, 2rd, 2431:103
- Sallam K.I. Prevalence of Campylobacter in chicken and chicken by-products retailed in Sapporo ares, Hokkaido, Japan. *Food Control*, 2007; 18: 1113-20.
- 20. Shakerian A., Rokni N., Sharifzadeh A., Alagha S. and Talebian R. Campylobacter jejuna's a

potential pathogen in liver of broilers chickens in slaughtered & retail market broilers in Shahre-Kord, Iran. *Iranian Journal of Food Sciences and Technology*, 2005; **1**: 43-50.

- Soltan Dallal M.M., Doyle M.P., Rezadehbashi M., DabiriH., Sanaei M., Modarresi S., *et al.* Prevalence and antimicrobial resistance profiles of Salmonella serotypes, Campylobacter and Yersiniaspp. Isolated from retail chicken and beef, Tehran, Iran. *Food Control*, 2010; **21**: 388– 392.
- 22. Suzuki H. and Yamamoto S. Campylobacter contamination in retail poultry meats and by-products in Japan: A literature survey. *Journal of Veterinary Medical Science*, 2009; **71**(3): 255-261.
- Taremi M., Soltan Dallal M.M., Gachkar L., Moez Ardalan S., Zolfagharian K. and Zali M.R. Prevalence and antimicrobial resistance of Campylobacter isolated from retail raw chicken and beef meat, Tehran, Iran. *International Journal of Food Microbiology*, 2006; **108**: 401-403.
- 24. Valdivieso-Garcia A., Harris K., Riche E., Campbell S., Jarvie A. and Popa M., *et al.* Novel Campylobacter isolation method using hydrophobic grid membrane filter and semisolid medium. *Journal of Food Protection*, 2007; **70**: 355-362.
- 25. Whyte P., McGill K., Cowley D., Madden RH. Moran L., Scates P., *et al.* Occurrence of Campylobacter in retail foods in Ireland. *International Journal of Food Microbiology*, 2004; **95**: 111-118.
- Yildirim M., Istanbulluoglu E. and Ayvali B. Prevalence and antibitoic susceptibility of thermophilic Campylobacter species in broiler chickens. *Turkish Journal of Veterinary Animal Sciences*, 2005; 29: 655-660.