
* To whom all correspondence should be addressed.
E-mail: ssdas80@gmail.com

JOURNAL OF PURE AND APPLIED MICROBIOLOGY,  March 2018. Vol. 12(1), p. 361-368

Comparative Analysis of miRNA-Target Prediction 
Algorithms with Experimentally Positive Data in

C. elegans and R. norvegicus Genomes

Shibsankar Das1*, Debabrata Mandal2 and Uttam Roy Mandal3 

1Department of Mathematics, Uluberia College, Uluberia, Howrah, W.B., India.
2Department of Computer Science, Tamralipta Mahavidyalaya, Tamluk, West Bengal -  721636, India.

3Department of Mathematics, Raidighi College, Raidighi, South 24 Parganas, W.B., India.

http://dx.doi.org/10.22207/JPAM.12.1.42

(Received: 10 January 2018; accepted: 17 February 2018)

 MicroRNAs (miRNAs) are small non-encoding RNAs of 19-24 nucleotides long. It 
regulates gene expression through target mRNA degradation or translational gene silencing. 
Experimental based prediction is laborious and economically unfavorable due to a huge number 
of miRNAs and potential targets. So researchers are focused on computational approach for faster 
prediction. A large number of computational based prediction tools have been developed, but 
their results are often inconsistent. Hence, finding a reliable computational based prediction tool 
is still a challenging task. Here we proposed a computational method, microTarget for finding 
miRNA - mRNA target interactions. We validated our result in C. elegans and Rattus norvegicus 
genomes and compared performance with three computational methods, like miRanda, PITA, 
and RNAhybrid. Signal-to-noise ratio, z score, Receiver operating characteristic (ROC) curve 
analysis, Matthews correlation coefficient (MCC) and F measure show that microTarget exhibits 
good performance than other three miRNA - mRNA target interactions methods used in this 
study.
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 miRNAs are first identified in the year 
1993 using genetic methods1 in Caenorhabditis 
elegans .  miRNAs are small, non-coding, 
endogenous RNAs that can negatively control their 
target gene expression post-transcriptionally2 and 
perform an important regulator of gene expression 
in many biological systems. miRNAs are expressed 
from long transcripts produced in animals, plants, 
viruses, and single-celled eukaryotes3. miRNAs 
have become the focus of many researchers 
because of their significant role in the degradation 
of mRNA, post-translational inhibition through 
complementary base pairing4, and ability to control 

many biological processes such as homeostasis3. 
miRNA regulates the target mRNA to make 
adjustments to the forming corresponding protein, 
which dysregulates the functions of miRNA, 
thereby leading to several human diseases like 
cancer, viral infection etc.5, 6, 7, 8, 9. A large amount 
of miRNA data has been generated in recent years. 
Due to the major efforts in identifying their targets 
and functions, a computational method is preferable 
than biological methods as it provides statistical 
approaches to assess their quality and accuracy. 
Some features used by computational approaches 
for the mammalian target prediction programs are 
based on base pairing pattern, thermodynamic 
stability, comparative sequence analysis, the 
presence of multiple target sites. Some widely used 
miRNA target prediction algorithms are miRanda10, 
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PITA11, RNAhybrid12 etc.  RNAhybrid and PITA 
are based on thermodynamics. RNAhybrid 
computes scores based on secondary structure, 
whereas PITA assesses the accessibility of the 
site (seed match) by the difference between the 
minimum free energy of the duplex and the energy 
required to unpair and open the target site. miRanda 
is based on three features: comparison of miRNA 
complementarity of 3' UTR regions, free energies 
of RNA-RNA duplexes, and conservation of target 
sites in related genomes, but due to the conservation 
of target sites, it can’t be used universally. The 
accuracy of miRNA target prediction can be 
improved with the use of positive and perfect 
negative set. Positive examples can be obtained 
from the available experimentally verified miRNA 
target databases such as MirTarBase database 
13. In the earlier machine learning approaches, 
randomly generated sequences were used as 
negative examples. However, such sequences often 
interact with miRNAs, as shown in the signal-to-
noise ratio experiments of previous studies14, 15. 
miRanda10 was then used to predict the targets of 
a randomly chosen subset of 100 such artificial 
miRNA. These artificial miRNA–target pairs 
were used as the negative data. These randomly 
generated negative examples may contain real 
cases by chance. To avoid these cases negative data 
are generated using mock miRNAs, in a manner 
similar to the approaches used in John et al.16 and 
Maragkakis et al.17. To improve false positive rate 
in our algorithm we have incorporated the results 
of Brennecke et al18 and Xiaowei and Wang19, and 
Grimson et al.20 in our algorithm. In this article, we 
have proposed our new algorithm microTarget and 
tried to validate in C. elegans and Rattus norvegicus 
genomes. We have validated microTarget with 
experimental results and compare validation results 
with miRanda, PITA, and RNAhybid. Statistical 
measures like signal-to-noise ratio, z score, MCC 
score, F-measure and ROC curve are calculated 
and compared results with miRanda, PITA, and 
RNAhybid in C. elegans and Rattus norvegicus 
genomes.

MATERIALS AND METHODS 

Positive data
 We considered experimentally validated 
data obtained from miRTarBase database13 as 

positive data set. 1542 experimentally validated 
miRNA- gene pairs of C. elegans genome and 
387 miRNA-gene pairs of Rattus norvegicus 
genome are obtained from miRTarBase and used 
as a positive set. We have also downloaded 3' UTR 
of target genes of C. elegans genome and Rattus 
norvegicus genome from UTRdb21.
Negative data
 The negative data set are produced using 
mock miRNAs in the procedure described in John 
et al.16 and Maragkakis et al17. Mock miRNAs are 
produced by random rearrangement of an actual 
miRNA sequence in such a way that mock miRNA 
and actual miRNA don't show any similarity in seed 
region. Every actual miRNA is permuted randomly 
using Fisher-Yates shuffle algorithm22 until 7mer 
seed sequence of permuted miRNA does not 
coincide with 7mer of the seed sequence of every 
actual miRNAs enlisted in miRTarBase database, 
and then we call it a mock miRNA. Mock miRNA-
gene pairs are made for every actual miRNA-3’ 
UTR of the positive dataset. We have used 113 
miRNA sequences and 305 3’UTR sequences for 
C. elegans genome and 113 miRNA sequences 
and 153 3’UTR sequences for Rattus norvegicus 
genome as the negative set.
microTarget algorithm
 microTarget algorithm23 is similar to the 
miRanda algorithm (Enright et al. 2004), however, 
instead of using empirical rules. It uses similar 
complementarity parameters as miRanda algorithm 
uses at every aligned position: +5 for G≡C, +5 for 
A=U, +2 for G=U and -3 for all other nucleotide 
pairs. The algorithm uses affine penalties for 
gap-opening (-8) and gap-extension (-1). Also, 
the scores of the first 11 positions from the 5' end 
of the miRNA are multiplied by 2. The following 
five rules apply to the positions from 5' end of the 
miRNA: 
(1) There must be 6 to 8 base pairs between 
positions 1 to 10.
(2) Seed region with 8 base pairs and starting from 
position 1, may have up to two G=U base-pairs or 
one bulge (either of the miRNA or of the 3’UTR) 
or single non-G=U mismatch in between the seed 
region (i.e. from positions 2-7).
(3) Seed region with 7 base pairs and starting from 
positions 1-4, may have one G=U base-pair or one 
bulge (either of the miRNA or of the 3’UTR) or 
single non-G=U mismatch in between seed region. 
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Table 1. Number of miRNA-target interactions by different algorithms 
in C. elegans and Rattus norvegicus genomes

                                              C. elegans                                          Rattus norvegicus
 No. of miRNA- No. of miRNA- No. of miRNA- No. of miRNA-
 target interactions  target interactions  target interactions  target interactions 
 in positive set in negative set in positive set in negative set

miRanda 474 285 222 142
PITA 1121 658 291 221
RNAhybrid 194 112 57 22
microTarget 950 265 243 131

Table 2. MCC scores of four algorithms in 
C. elegans and Rattus norvegicus genomes

                           MCC Score
 miRanda PITA RNAhybrid micro Target

C. elegans 0.21 0.30 0.09 0.45
Rattus norvegicus 0.21 0.15 0.15 0.29

Table 3. F-measures of four algorithms in 
C. elegans and Rattus norvegicus genomes.

                        F-measure
 miRanda PITA RNAhybrid microTarget

C. elegans 0.41 0.67 0.21 0.69
Rattus norvegicus 0.59 0.63 0.24 0.64

(4) Seed region with 6 base pairs and starting from 
positions 2-5, may have only one   G=U base-pair 
in between seed region. 
(5) If G=U base pair or bulge or mismatch is used 
in seed region and starting from positions either 3-4 
or 4-5, there must be at least 4 base pairs (including 
G=U base-pairs) from positions 12 to 3’ UTR end 
of miRNA.
 Complementarity score of a miRNA 
-3’ UTR pair is calculated using the parameters 
and rules mentioned above and optimized using 
dynamic programming and then summed over 
all aligned positions. This miRNA and 3’ UTR 
interaction will be called as a possible target if its 
complementarity score is greater than 80 (default 
value). All the non-overlapping hybridization 
alignments in decreasing order of complementarity 
score are also found. In order to calculate free 
energies of the RNA: RNA duplexes, we use folding 

routines from the Vienna RNA secondary structure 
programming library (RNAlib)24. The thresholds 
used for the possible target are complementarity 
score > 80 and the energy of the duplex structure 
< -10 kcal/Mol. All possible miRNA-3’ UTR 
interaction sites are ranked according to their 
highest total score and lowest total energy. Only 
the top 10 ranked miRNA-3’UTR interaction 
sites are selected as its candidate target genes for 
each miRNA. A target gene if tied with multiple 
miRNAs, is selected by the miRNAs for which it 
scores highest score and lowest free energy so that 
same miRNA-3’ UTR site is predicted by more than 
one miRNAs.
Randomized test
 We performed similar randomized test 
as mentioned in Enright et al10. Each randomized 
miRNA was constructed by retaining its base 
composition of nucleotides and changing the 
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position of nucleotides taking random one at a 
time.  100 sets of all miRNAs for each genome of 
C. elegans and Rattus norvegicus were used in this 
study. Each of 100 sets of randomized miRNAs 
was individually investigated against all 3’UTR 
of target genes for each genome of C. elegans 
and Rattus norvegicus downloaded from UTRdb. 
Actual miRNA counts and counts averaged over 
all 100 random sets and their standard deviations 
were used to calculate Z-scores for each genome 
of C. elegans and Rattus norvegicus.

RESULTS AND DISCUSSION 

Validation of results of miRanda, PITA, 
RNAhybrid and microTarget
 In this study, 1542 experimentally 
validated miRNA- gene pairs of C. elegans genome 
and 387 miRNA-gene pairs of Rattus norvegicus 
genome are used as a positive set and we have 
selected three other widely used algortihms, 

namely miRanda, PITA and RNAhybrid in addition 
to our algorithm microTarget. The newest versions 
of miRanda (microrna.org; Enright et al.10), PITA11 
and RNAhybrid12 executables were taken and 
executed with its default parameters as described 
in the package. 
 Table 1 shows the number of miRNA-gene 
intercations by miRanda, PITA, RNAhybrid and 
microTarget in C. elegans and Rattus norvegicus 
genomes. PITA predicts the highest number of 
miRNA-target interactions in the positive and 
negative set, whereas microTarget predicts a good 
number of miRNA-target interactions in positive 
set and less number of interactions in negative set. 
RNAhybrid predicts very less number of miRNA-
target interactions in both positive and negative 
set. PITA showed a high number of miRNA-target 
interactions and RNAhybrid showed less number 
of miRNA-target interactions due their sensitivity 
and specificity.

Fig. 1. Histogram of selected features in C. elegans genome
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Fig. 2. Histogram of selected features in R. norvegicus genome

Table 4. Signal-to-noise ratios and Z-scores of miRanda, PITA, 
RNAhybrid and microTarget in C. elegans and Rattus norvegicus genomes

                                                  C. elegans                     Rattus norvegicus
 miRanda PITA RNA micro miRanda PITA RNA micro
   hybrid Target   hybrid Target

Average no. of predicted  4.35 11.10 1.78 5.78 1.96 2.58 0.50 2.15
targer gene per miRNA
Average no. of predicted  2.74 5.98 0.92 2.44 1.22 1.97 0.26 1.04
targer gene per randomized 
miRNA
Standard Deviation 0.13 0.20 0.08 0.13 0.08 0.06 0.04 0.06
Signal-to-noise ratio 1.59 1.86 1.93 2.37 1.61 1.31 1.92 2.07
Z Score 12.80 25.64 10.15 26.12 9.03 9.53 6.67 17.28

Comparing performance of microTarget at the 
target level 
 In this study, we have chosen four 
features- T’s frequency in effective seed matching 
sight, G: T in seed region, number of G: T matches 
in the total region and free energy in the seed region 
as all those features are common in all three target 
prediction algorithms. The discriminating power of 
each individual feature is assessed as the marginal 
distribution in the histogram in both positive and 
negative set. Figure 1 and 2 show the histogram 

of selected features in C. elegans and Rattus 
norvegicus genomes respectively. 
 We have also assessed the performance 
of microTarget with other algorithms in terms of 

sensitivity,
TP

TP+FN
Sn

 =  
  , specificity 

TN

TN+FP
Sp

 =  
 

, Matthew’s correlation coefficient (MCC) 
TP×TN-FP×FN

(TP+FP) (TN+FN) (TP+FN) (TN+FP)
MCC

 
=   × × ×   
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and  

2TP

2TP+FP+FN
F measure

 − =  
   where  TP 

= true positive, TN= true negative, FN = false 
negative and FP = false positive. In this paper, 
we have evaluated the Receiver Operating 
Characteristic (ROC) performance of miRanda, 
RNAhybrid, PITA and microTarget algorithm. 
ROC performance is normally evaluated as a plot 
of sensitivity vs. 1- specificity.  Figure 3 and 4 show 
the ROC curves of four miRNA- target prediction 
algorithms in C. elegans and Rattus norvegicus 
genomes respectively. In C. elegans, AUC (area 
under the curve) of microTarget is 0.89, whereas 
AUC of miRanda, PITA and RNAhybrid are 0.82, 
0.77 and 0.78 respectively.  In Rattus norvegicus, 
AUC of microTarget is 0.86, whereas AUC of 
miRanda, PITA and RNAhybrid are 0.75, 0.75 
and 0.76 respectively. It is clear that microTarget 
performs well than other three miRNA target 
prediction algorithms. 
 Table 2 shows the MCC score in both 
the genomes of C. elegans and Rattus norvegicus. 
MCC scores of microTarget in C. elegans and 
Rattus norvegicus are 0.45 and 0.29 respectively, 
but MCC scores of other three algorithms are less 
than 0.21 in both genomes. Table 3 shows the 
F -measure in both the genomes of C. elegans 
and Rattus norvegicus. microTarget shows 0.69 

and 0.6 F-measure in C. elegans and Rattus 
norvegicus respectively, but F-measure of other 
three algorithms are less than microTarget in both 
genomes. It can be easily verified that, at any fixed 
true positive rate (TPR), microTarget provides the 
lowest false positive rate (FPR) and at the same 
time, for any fixed FPR, the TPR of microTarget is 
higher than those of all the three target prediction 
algorithms. 
Analysis of signal-noise ratio of all four 
algorithms
 The signal-to-noise ratio is another way 
of validating results. It is demarcated as the ratio 
between average no. of predicted targets by actual 
miRNA and the average number. of predicted 
targets by randomized miRNA in searched 3’UTR.  
Table 4 shows the signal-to-noise ratio of miRanda, 
RNAhybrid, PITA, and microTarget in two 
genomes. It is clear from Table 4 that signal-to-
noise ratio of microTarget is greater than 2 in both 
the genomes. We have also calculated the z score 
of miRanda, RNAhybrid, PITA and microTarget in 
two genomes (shown in Table 4) and microTarget 
showed highest z-score in C. elegans and Rattus 
norvegicus genomes. These results indicate that 
microTarget is significantly predicted miRNA-
target interactions than miRanda, RNAhybrid, and 
PITA.

Fig. 3. The ROC curves of different algorithms in C. elegans genome (AUC is shown in the bracket)
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CONCLUSIONS

 In this article, we have proposed our 
new algorithm microTarget and tried to validate 
in C. elegans and Rattus norvegicus genomes. 
Experimentally validated results downloaded 
from MirTarBase database of C. elegans and 
Rattus norvegicus genomes are used as positive 
set and results showed that microTarget performs 
better than other three target prediction methods. 
Statistical measures like a signal-to-noise ratio, z 
score, MCC score, F-measure and ROC curve are 
calculated and results showed that performance of 
mocroTarget is quite satisfactory than miRanda, 
PITA, and RNAhybrid.
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