Development and Evaluation of Buccal Film of Carvedilol

P.K. Sharma, Neeraj Sharma*, A.P. Singh and Nisha Mary Joseph

KIET School of Pharmacy, Ghaziabad, India.

(Received: 10 March 2007; accepted: 17 March 2007)

Carvedilol has a bioavailability of about 25 – 35 % because of extensive first-pass metabolism; to overcome this major drawback of carvedilol buccal film was formulated and evaluated for its weight variation, thickness, drug content, and percentage moisture absorption and percentage moisture loss. An in-vitro release study was designed using semipermeable membrane. Four formulations were prepared using 4% HPMC (CV.), 6% HPMC (CV.), 4%EC+0.05% PVP (CV.) and 6%EC + 0.5% PVP (CV.). The in-vitro release profile for the formulation CV. which contain 6%EC and 0.5%PVP and 8% EC showed sustain release up to 24 hours in Phosphate buffer pH 6.4 having constant ionic strength (µ=0.5) and constant concentration 0.05 µg/ml and obeyed first order kinetics.

Keywords: Carvedilol Buccal Film, Ethyl cellulose, Polyvinylpyrrolidone, Hydroxypropylmethylcellulose.

EXPERIMENTAL

Materials
Carvedilol was obtained as a gift sample from Sun Pharma Ltd. The polymers Hydroxypropyl methylcellulose (HPMC 15 cps), ethyl cellulose (EC 20 cps) and polyvinyl pyrolydone (PVP K-30) were obtained from Ozone Pharmaceutical Ltd. H.P. Other chemicals were of analytical grade.

Methods
Preparation of calibration curve
Calibration curve was prepared in methanol and absorbance was determined UV Spectrophotometrically at λmax =285 nm. Linear regression equation having r 2=0.9997 was observed in concentration range 2-12 µg/ml.

Preparation of Reservoir Film
A number of buccal film containing 20 mg of carvedilol in an area of 1 cm sq. was prepared by solvent casting technique. PEG-600, glycerol in a concentration of 30% w/w of polymer was in corporate as plasticizer in HPMC and EC film respectively. A film of 1 cm sq. area was cut from the total film area.
Rate Controlling Membrane
A rate controlling membrane was cast on a glass plate using ethyl cellulose (8% w/w) by incorporating glycerol (30% w/w of polymers) as plasticizer. Membrane of 1 cm sq in area was cut and both sides of drug reservoir was sealed using this membrane to control the release of drug.

Drug Content Determination
Different polymers like HPMC, EC, prepared Carvedilol Buccal film of (1 cm sq.). The size of film was 1 cm sq. The film of HPMC was dissolved in small amount of methanol shaken vigorously for 5 minutes and then diluted with 10 ml of methanol. Buccal film of carvedilol with EC was dissolved in small amount of methanol shaken vigorously for 5 minutes and then diluted 10 ml with methanol. Both the solution was filtered through Whatmann filter paper no.1.

In-vitro Release
The in-vitro release study was carried out using semipermeable membrane. The membrane used was permeable to low molecular weight substance. The membrane was tied to one end of the open ended cylindrical tube, which acts as donor compartment. A buccal film containing 20 mg of carvedilol was placed inside the compartment. This set up was placed over the beaker, which act as receptor compartment, containing 100 ml buffer pH 6.4 having constant ionic strength (µ=0.5) and constant concentration 0.05 µg/ml, the temperature was maintained 37± 1°C and continuous stirring was performed throughout the experiment.

5 ml of aliquots was withdrawn from receptor compartment at every one-hour time interval for 24 hours. The withdrawn quantity of aliquots was replaced with fresh phosphate buffer solution (6.4 pH) immediately. The samples were collected and analyzed spectrophotometrically.

RESULTS AND DISCUSSION
In the present study, buccal film of carvedilol was prepared using the polymers like HPMC, EC and PVP. The polymeric membrane acts as the rate controlling membrane. Evaluation was done on the parameters like weight variation, thickness, moisture absorption; moisture loss and drug content (Table 2).

The thickness of film ranges from 0.17 ± 0.01 mm to 0.21 ± 0.01mm. The thinnest formulation was CV, and the thickest being CV. The uses of plasticizer in the formation of buccal films led to transparent, flexible films. Moreover the film was also checked for its cracks. This showed a uniform film formation. The weight of the film varied between 0.018 to 0.019mg (Table 2): Moisture absorption of the films were also studied and it was shown that CV showed highest moisture absorption and CV showed minimum absorption: the percentage moisture loss was highest in CV and minimum in CV. Drug content in the formulation was more or less same.

Table 1. Formulation of Buccal film of CV

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Batch Code</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CV1</td>
<td>4% HPMC</td>
</tr>
<tr>
<td>2</td>
<td>CV2</td>
<td>6% HPMC</td>
</tr>
<tr>
<td>3</td>
<td>CV3</td>
<td>4% EC + 0.5% PVP</td>
</tr>
<tr>
<td>4</td>
<td>CV4</td>
<td>6% EC + 0.5% PVP</td>
</tr>
</tbody>
</table>

Table 2. Evaluation of buccal film of cv

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Batch Code</th>
<th>DRFC (%w/w)</th>
<th>PL (mg)</th>
<th>WV (+sd)mm</th>
<th>T (+sd)</th>
<th>%MA (+sd)</th>
<th>%ML (mg)</th>
<th>DC±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CV1</td>
<td></td>
<td>4% HPMC</td>
<td>PEG-600</td>
<td>0.017</td>
<td>0.017±0.01</td>
<td>0.51±0.64</td>
<td>0.54±0.01</td>
<td>18.14±0.25</td>
</tr>
<tr>
<td>2 CV2</td>
<td></td>
<td>6% HPMC</td>
<td>PEG-600</td>
<td>0.018</td>
<td>0.017±0.02</td>
<td>0.55±0.50</td>
<td>0.47±0.02</td>
<td>18.27±0.22</td>
</tr>
<tr>
<td>3 CV3</td>
<td></td>
<td>4% EC + 0.5% PVP</td>
<td>Glycerol</td>
<td>0.017</td>
<td>0.019±0.01</td>
<td>0.33±0.02</td>
<td>0.24±0.10</td>
<td>19.21±0.22</td>
</tr>
<tr>
<td>4 CV4</td>
<td></td>
<td>6% EC + 0.5% PVP</td>
<td>Glycerol</td>
<td>0.018</td>
<td>0.021±0.01</td>
<td>0.35±0.02</td>
<td>0.28±0.26</td>
<td>19.25±0.26</td>
</tr>
</tbody>
</table>


with a variation of 0.08%, which is the indication for the formulation to be considered as a formulation having the drug uniformly dispersed in the film. The increase in polymer concentration decreases the diffusion of the drug from the matrix. On comparison of the release results from the fourth formation CV₄ showed prolonged release of drug for a period of 24 hrs (Fig. 1). The formulation CV₄ showed first order release pattern (Fig. 1). CV₄ was considered as the best formulation from the study for providing an extended release of the drug.

**Fig. 1.** Release pattern of Carvedilol

Carvedilol buccal film, CV₄ (drug reservoir with 6% EC + 0.5% PVP and 8% EC as rate controlling membrane). Showing first order release.

**Fig. 2.** Comparative *in vitro* release profile of Carvedilol Formulations

(-♦-) Formulation CV₁ 4% HPMC (-■-) Formulation CV₂ 6% HPMC
(-▲-) Formulation CV₃ 4% EC + 0.5% PVP (-x-) Formulation CV₄ 6% EC + 0.5% PVP. In all Formulations from CV₁ to CV₄ 8% EC was Used as the rate controlling membrane.
CONCLUSION

The buccal film of carvedilol was successfully developed with using 4% HPMC (CV$_1$), 6% HPMC (CV$_2$), 4%EC+0.05% PVP (CV$_3$) and 6%EC + 0.5% PVP (CV$_4$). By using PCP –disso software, version 3.0 and applying statistical approaches CV$_4$ was considered as the best formulation showing an extended release pattern of the carvedilol. The in-vitro release profile for the formulation CV$_4$ showed 81.3% release up to 24 hrs in phosphate buffer pH 6.4 having constant ionic strength (µ=0.5) and constant concentration 0.05 mg/ml confirms and obeyed first order kinetics

ACKNOWLEDGMENTS

We are highly acknowledge Sun Pharma Ltd. for gift sample of carvedilol.

REFERENCES

7. S.Budavari, The Merck Index,12$^{th}$ ed ,Merk and co.,inc. NJ,USA, 1996; 5178.