Vegetative Growth and Yield of *Arachis hypogea* and *Vigna radiata* in Response to Region Specific *Rhizobium* Biofertilizer Treatment

S.K. Sethi and S.P. Adhikary*

P.G. Department of Biotechnology, Utkal University, Bhubaneswar -751 004, India.

(Received: 17 January 2009; accepted: 20 February 2009)

Effect of *Rhizobium* inoculation on vegetative growth and yield of two different leguminous crops *Arachis hypogea* and *Vigna mungo* was investigated. Inoculation of crop specific rhizobial strains increased plant biomass, nodule number, height of plant, leaf number, and flower number. The yield of *Arachis hypogea* and *Vigna radiata* due to *Rhizobium* inoculation was higher by 22% and 29% respectively over control.

Key words: Rhizobium, region specific strain, Arachis hypogea, Vigna radiata, growth, yield.

The nitrogen requirement for crops is well known and cropping in low fertility soils, especially those poor in nitrogen, contributes to the lower yield. This element is usually supplied to the crop as the commercially available urea, but heavy amount of

* To whom all correspondence should be addressed. Te.: +91-674-2587389; E-mail: adhikary2k@hotmail.com the urea-nitrogen is lost through different mechanisms causing environmental problems¹. In some regions crop production has stagnated or even declined due to depletion in bioavailability of nitrogen². Reports have shown that utilization of biological nitrogen fixation (BNF) technology can decrease the use of urea-N and reduce the environmental problems to a considerable extent. Rhizobia are the important soil microorganisms form symbiotic association with leguminous crops and contribute significant amount of fixed nitrogen. Increasing number of reports has also shown that Rhizobia can act as PGPR in leguminous as well as non-leguminous plants³. Since Arachis hypogea and Vigna radiata are the major crops of many region of India, the present work was undertaken to assess the effect of inoculation of region specific and crop specific Rhizobium on the vegetative growth and yield of these two leguminous crops.

296 SETHI & ADHIKARY: EFFECT OF *Rhizobium* ON VEGETATIVE GROWTH OF CROPS

MATERIAL AND METHODS

Thirty days old *Arachis hypogea* and *Vigna radiata* plants were uprooted washed in

distilled water and the well-formed, healthy pinkish nodule on the tap roots were carefully cut out. The nodules were immersed in 95% ethanol for 10 sec, sterilized for 5 minutes in 0.1% acidified mercuric

Table 1. The growth pattern, colony type, colour of colony, Congo red and Bromothymol blue test,
and EPS production by isolates of <i>Rhizobium</i> sp. from <i>Vigna radiata</i> and <i>Arachis hypogea</i>

Strain no.	Place of collection	Isolated from host plant	Growth pattern	Colony type and colour	Congo red test production	Bromothymol blue test	Growth after 3 days	EPS
UU-1	IARI culture strain-Delhi	Vigna radiata	Slow, alkali producer	White, translucent, round shape	+ ve, white colony	Blue	Good growth	+
UU-2	Gobindapur, Surada block, Ganjam	Vigna radiata	Fast, acid producer	White, gummy, oval shape	+ ve, white colony	Yellow	Good growth	+++
UU-4	Maniakati, Surada block, Ganjam	Vigna radiata	Moderate, alkali producer	White, gummy, slimy, round	+ ve, white colony	Pale yellow	Good growth	++
UU-7	Paduraisuni, Surada block, Ganjam	Vigna radiata	Fast, acid producer	White, translucent, elongated shape	+ ve, white colony	Yellow	Abundant growth	++
UU-10	Lathipada, Surada block, Ganjam	Vigna radiata	Moderate, acid producer	White, gummy, flat shape	+ ve, white colony	Pale yellow	Good growth	+
UU-13	Asurabandha Surada block, Ganjam	Vigna radiata	Fast, acid producer	White, round shape	+ ve, white colony	Yellow	abundant growth	+
UU-16	IARI culture strain-Delhi	Arachis hypogea	Slow alkali producer	White, translucent and round shape	+ ve, white colony	Blue	good growth	+
UU-17	Maniakati, Surada block, Ganjam	Arachis hypogea	Slow, alkali producer	White, gummy, slimy, elongated shape	+ ve, white colony	Blue	poor growth	++
UU-18	Maniakati, Surada block, Ganjam	A.rachis hypogea	Fast, acid producer	White, gummy, slimy, flat shape	+ ve, white colony	Yellow	Abundant growth	+++
UU-19	Amrutulu, Surada block, Ganjam	Arachis hypogea	Slow, alkali producer	White, gummy, slimy, flat shape	+ ve, white colony	Blue	Poor growth	+++
UU-20	Buguda, Surada block, Ganjam	A.rachis hypogea	Moderate, alkali producer	White, translucent, round shape	+ ve, white colony	Pale yellow	Good growth	++
UU-21	Khilabadi, Surada block, <i>hypogea</i>	<i>Arachis</i> Ganjam	Fast, acid	White, producer growth	+ ve, translucent,	Yellow oval shape	Good white colony	++
UU-22	Surada, Ganjam	Arachis hypogea	Fast, acid producer	White, translucent, round shape	+ ve, white colony	yellow growth	Abundant	+

* EPS= (+) = Less, (++) = Moderate, (+++) = High

chloride (HgCl₂-1g L⁻¹, Conc. HCl- 5ml.L⁻¹) and washed six times with sterile distilled water to get rid of the chemical⁴. Each nodule was crushed using a sterile glass rod in a aliquot of sterile distilled water. Serial dilutions of the suspension were made and an aliquot of appropriate dilution was plated on Yeast-Extract Mannitol Agar medium (YEMA) and incubated at 28±2°C for 4-7 days⁵. Distinct colonies were picked up and transferred to agar slants for further purification. Confirmation the Rhizobia were ascertained by streaking on YEMA medium supplemented with congored 0.025% (w/v)6. The Rhizobia stand out as white, translucent colonies7. One week old Rhizobial colonies kept on YEM agar media (1.5% agar) were used for preparation as inoculants. For this purpose loops of the respective colonies were inoculated in sterile YEMA media containing K_{2} HPO₄-0.5g/l, MgSO₄.7H₂O-0.2g/l, NaCl-0.1g/l, Yeast Extract-0.4g/l, Mannitol-10.0g/l and pH 7.8, and the concentration of rhizobial suspension was 10⁵ C.F.U/ml. Strains were routinely maintained on YEMA slants and kept at 4°C (8).

For field experiments, healthy seeds of *A. hypogea* and *V. radiata* were surface sterilized with 95% ethanol for 3-5 minutes followed by rinsing six times with sterile water. The seeds were then steeped in the respective rhizobial suspension. Seeds treated with distilled water were used as the control. All seeds were mixed gently in shade to bring the seeds and bacteria into close contact for 30 min. The treated and control seeds were sown immediately in 3' dia, 10" high circular cement pots containing non sterile soil from the forest with

	Days after sowing						
	30		60	60		90	
Parameters	Control	Treated	Control	Treated	Control	Treated	
Height of plant	14.2±3.5	16.6±2.9 (16)	32.2±9.4	51.5±17.8 (59)	91.9±9.9	110.5±31.8 (21)	
Leaf number	30.3±6.7	33.2±7.9 (9.5)	88.9±13.1	96.4±17.9 (8.4)	144.6±31.2	176.8±67.1 (23)	
Flower number	$4{\pm}0.8$	7±7.9 (94)	38±13.1	46±17.9 (81)	23±31.2	36±67.1 (56)	
Nodule number/ plant					89±9.9	109±10.5 (22)	
Nodule fresh wt/ Plant (mg)					273.5±20.4	317.7±28.6 (16)	
Root weight (dry, g)					2±0.4	2.6±0.5 (30)	
Shoot weight (dry, g)					128±22.1	144±26.1 (13)	
Shoot wt/Root wt					64	56	
Total harvested Pods/plant					14	19 (36)	
Total harvested Seeds/plant					25±4.6	34±8.8 (36)	
Weight of 100 dry Pods (g)					55±5.6	3±8.9 (14)	
Weight of 100 dry Seeds (g)					28±4.6	32±2.2 (14)	
Total yield of Seeds/acre (kg)					198	243 (22)	

Table 2. Vegetative growth and yield of Arachis hypogea in response to Rhizobium biofertilizer treatment

Values in parenthesis indicate percent increase (+) or decrease (-) over control.

less microbial load. The experiments were conducted during Kharif season of 2007. Height of plant, leaf number, initiation of flowering, flower number, nodule number, dry weight of root and shoot of these two crops, and in addition the total number of pods, weight of pods and seeds were recorded. Value of minimum 10 plants \pm S.D was calculated. Taking the yield data per the area in the circular pits, the yield per acre has been calculated and presented.

RESULTS AND DISCUSSION

Totally six rhizobial strains from *Vigna* radiata and seven from *Arachis hypogea* were identified on the basis of morphological and physiological characteristics (Congored test, Bromothymol Blue test, and EPS production) (Table-1). The colonies produced were gummy, translucent, circular and convex with entire margins. They showed a mean generation time varying from 24-72h in still culture. Those rhizobial strains turned the YEM agar medium with Bromothymol Blue (BTB) to yellow were fast growing and acid producers having mean generation time of 24 h. where as those produced blue colorations of the medium with BTB were alkali producers; slow growing having mean generation time of 48-72h.

Rhizobium strains UU-22 and UU-13 for *A. hypogea* and *V. radiata* respectively were the fast growing strains isolated from the region. These

Table 3. Vegetative growth and yield of Vigna radiata in response to Rhizobium biofertilizer treatment

		Da	ys after sowing			
		30		60		90
Parameters	Control	Treated	Control	Treated	Control	Treated
Height of plant	20.3±2.7	21.7±2.9	25.9±5.3	32.9±4.5	34.8±6.2	41.0±4.6
		(7)		(21)		(15)
Leaf number	10.2 ± 1.6	11.3 ± 2.1	18.6 ± 7.1	26.8 ± 4.9	34.0 ± 8.6	36.0 ± 7.1
		(10)		(31)		(6)
Flower number	$8.1{\pm}1.8$	8.6 ± 2.7	19.9 ± 3.5	20.7±9.5	8.3 ± 3.4	11.3 ± 4.6
		(6)		(43)		(27)
Nodule number/					66 ± 9.9	$89 \pm \! 10.5$
Plant						(34)
Nodule fresh wt/					162.3 ± 20.4	188.4±28.6
Plant (mg)						(16)
Root weight					1.2 ± 0.2	1.9±0.4
(dry, g)						(36)
Shoot weight					18.8 ± 0.9	22.4±1.8
(dry, g)						(19)
Shoot wt/Root wt					7.3	5.7
Fruit (pod)					11.7 ± 4.2	13.3 ± 4.5
Number						(13)
Weight of 100 dry					20±3.2	26±4.2
Pods (g)						(23)
Weight of 100 dry					5.5 ± 0.8	6.2 ± 0.4
Seeds (g)					0.0-010	(12)
Total pod yield/					56.4±2.8	(12) 72.4± 4.3
Plant (g)					2011-210	(28)
Total seed yield/					25.8±6.9	(20) 34.8±6.2
Plant (g)					20.0-0.7	(36)
Total yield/acre					789	1023
(kg)					107	(29)
(16)						(2))

Values in parenthesis indicate percent increase over control

used as treatment showed a positive influence on the vegetative growth as well as the yield of both the leguminous crops. Upon treatment with Rhizobium increase of biomass, height of plant, number of leaf, number of flower, nodule number and pod weight per plant of A. hypogea increased over control, though there was not much difference in the height of the plant, number of flower in case of V. radiata and flower number in case of A. hypogea through out the experimental period (Table 2 and 3). The control had an average biomass and less number of nodules on their roots. However, with crop specific and region specific Rhizobium inoculation 22 and 34% enhancement of nodule number was recorded in A. hypogea and V. radiata respectively. Similarly increase of shoot and root biomass by 13 and 30% in A. hypogea and 19 and 36% in V. radiata and yield by 22 and 29% in A. hypogea and V. radiata respectively due to Rhizobium biofertilizer treatment over the respective control was recorded.

Success of inoculation of Rhizobium at field levels has been reported several times in the past (7, 9-14). In these reports effect of crop specific Rhizobium species immobilized in different carrier materials and inoculated in different types of soils, and also in combination with other nitrogen fixing microorganisms in consortia on the yield attributes has been demonstrated. In many other cases failure of Rhizobium inoculation has also been observed. Failure to obtain desired response has been attributed to (I) presence of native ineffective strains which could not be displaced by the introduced ineffective strains, (II) the presence of effective native rhizobial strains in large number which compete and over power the inoculated ones, or (III) the soil conditions of the inoculated field quite different from that the locations from where the inoculated strains were isolated that limit symbiosis caused by acidity, alkalinity and other factors relating to physico-chemical properties of the soil. To overcome the possible barriers efficiency of region specific and crop specific Rhizobium species were tested in the field in the present work. The results clearly demonstrated that inoculated Rhizobium isolated from local environments enhanced the growth, nodulation as well as the yield of legume crops.

ACKNOWLEDGMENTS

The authors thank the Heads of the Post Graduate Department of Botany and Biotechnology for providing necessary facilities. Financial assistance from DBT, Govt. of India through a project is gratefully acknowledged.

REFERENCES

- Hungria, M., Campo, R. J., Mendes, I. C. Benefits of inoculation of the common bean (*Phaseolus vulgaris*) crop with efficient and competitive *Rhizobium tropici* strains. *Biol. Fertil. Soils*, 2003; **39**: 88-93.
- Timsina, J and Connor, D. J. Productivity and management of rice-wheat cropping systems: issues and challenges. *Field. Crop. Res.*, 2001; 69: 93-132.
- Hossain, M. S. and Martensson, A. Potential use of *Rhizobium* spp. to improve fitness of nonnitrogen fixing plants. *Soil and Plant science*, 2008, ??1-7.
- Chen, W.M. and Lee, T. M. Genetic and phenotypic diversity of rhizobial isolates from sugarcane- Sesbania cannabina-rotation fields. *Biol. Fertil. Soils*, 2001; 34:14-20.
- Bogino, P., Banchio, E., Bonfiglio, C. and Giordano, W. Competitiveness of a *Bradyrhizobium* sp. Strain in soils Containing Indigenous Rhizobia. *Curr. Microbiol.*, 2008; 56: 66-72.
- Hameed, S., Yasmin, S., Malik, K. A., Zafar, Y. and Hafeez, F. Y. Rhizobium, Bradyrhizobium and Agrobacterium strains isolated from cultivated legumes. *Biol. Fertil. Soils*, 2004; 39: 179-185.
- Subbarao, N. S. *Rhizobium* and legume root nodulation. In Soil Microbiology (Ed. N. S. Subbarao). 1977; 166-228. Oxford and IBH Publishing Co., New Delhi.
- Castro, S., Vinocur, M., Permigiani, M., Halle, C., Taurian, T. and Fabra, A. Interaction of the fungicide mancozeb and *Rhizobium* sp. in pure culture and other field conditions. *Biol. Fertil. Soils*, 1997; 25: 147-151.
- Subbarao, N. S. *Rhizobium* inoculant. In Biofertilizer in Agriculture (Ed. N. S. Subbarao). 1984; 17-73. Oxford and IBH Publishing Co., New Delhi.
- 10. Salve, P. B. and Gangawane, L. V., Rhizobium from wild legumes and nitrogen fixation in

Groundnut. In Biofertilizer Technology Transfer (Ed. L. V. Gangawane) pp- 95-100. Associated Publishing Co. New Delhi 1992.

- 11. Xavier, L. J. C. and Germida, J. J., Selective interactions between arbuscular mycorrhizal fungi and *Rhizobium leguminosarum bv. viceae* enhance pea yield and nutrition. *Biol Fertil Soils*, 2003; **37**: 261-267.
- Barik, J. and Talukdar, N. C., Seasonal variation in response of pea (*Pisum sativum*) and Green gram (*Vigna radiata*) to *Rhizobium* inoculation in Assam. In Biotechnology in Sustainable and Organic farming (Eds. A. K. Yadav, S. R. Chaudhary and N. C. Talukdar) 2004; 240-243. Shree Publishers and Distributors, New Delhi.
- Azad, P., Screening of native *Rhizobium* strains for sustainable crop production in pulse-rice cropping system. In Biotechnology in Sustainable and Organic farming (Eds. A. K. Yadav, S. R. Chaudhary and N. C. Talukdar) pp-244-248. Shree Publishers and Distributors, New Delhi 2004.
- Gunasekaran, S., Balachandar, D. and Mohanasundaram, K., Field evaluation of liquid and carrier based Rhizobial inoculants in Redgram. In Biofertilizer Technology. (Eds. S. Kannaiyan, K. Kumar and K. Gobindarajan) pp. 265-268. Scientific Publishers, Jodhpur, Rajasthan, India 2004.