In vitro Antimicrobial activity and QSAR Studies of Some Quinazolinone Substituted Sulphones

Pramilla Sah* and Nirmala Kumari

Department of Chemistry, J.N.V. University, Jodhpur - 342 005, Rajasthan, India.

(Received: 30 June 2010; accepted: 06 August 2010)

Seven new 2-(3-phenyl-6,8-disubstituted 4-oxo-(3H)-quinazolinyl)- 2'/4'/2', 4'substituted phenyl sulphones were screened against three bacterial strains *E. coli*, *S. typhi* and *S. aureus* and antifungal against *A. flavus* and *Penicillium* species. Some of them were found to be active.

Key words : Sulphones, Antimicrobial activity.

Dapsone also known as 4,4'-diamine diphenyl sulphone or DDS is the drug of choice in the chemotherapy of leprosy and also for the treatment of nocardiosis, tuberculosis and prophylaxis. A useful chemotherapeutic agent, it exhibits an antibacterial spectrum, the mechanism of action, being similar to sulphanilamide.¹ Substituted sulphones have been reported to possess a broad biocidal spectrum.²⁻³

Quinazolinones also have immense biological potential. Antimicrobial antiinflammatory, antitubercular are some of the activities reported by this nucleus.⁴⁻⁷

MATERIAL AND METHODS

Melting points were taken in a 'Neolab' electrical apparatus. Chemical structures were identified by spectral techniques of IR, PMR, Mass and elemental analysis. 2–mercapto–3–phenyl–6/ 6,8–disubstituted quinazolin–4(3H)–ones (1) were synthesized by following the known procedure.⁸

2-mercapto-(2'/4'/2',4'-aryl substituted)-3phenyl-6/6,8-disubstituted quinazolin-4(3H)ones (2)

Equimolar ratio of (1) and an appropriate aryl halide initially dissolved in sodium carbonate solution (1.75 g in 5 ml water) were refluxed in 15 ml of dimethyl formamide for 6–7 hrs. The solution was cooled, diluted with water and filtered. The filtrate was further acidified with conc. HCl. A precipitate was obtained which was filtered, washed with water dried and recrystallised from methanol. Physical data given in Table 1.

2-(3-phenyl-6/6,8-disubstituted-4-oxo-(3H)quinazolinyl-2'/4'/2',4'-substituted phenyl sulphones (3)

0.01 mole of appropriate quinazolinones (2) were dissolved in 10 ml of glacial acetic acid and hydrogen peroxide (50%), 10 ml was added slowly dropwise with constant stirring. On completion of the addition of the oxidant, the reaction mixture was kept aside for half an hour. The solid which separated was filtered, dried and recrystallised from ethanol. Their physical data is given in Table 1.

Antimicrobial activity

Bacterial and fungal strains were obtained from the Microbial Technology (IMTECH), Chandigarh and subcultured. Nutrient Agar Medium (NAM) was used for bacteria and Potato

^{*} To whom all correspondence should be addressed. E-mail: pramilla s@yahoo.co.uk

Dextrose Agar (PDA) and Yeast Malt Agar (YMA) were used for *Penicillium* species and *A. flavus.*⁹ The human pathogenic bacterial strains selected were *E. coli* MTCC 1687, *S. typhi* MTCC 734, *S. aureus* MTCC 737. Disc diffusion technique was used for the antibacterial activity while drug dilution method was followed for the antifungal activity.^{10,11}

The petri dishes were thoroughly washed, dried at $35-37^{\circ}$ C for about 30 minutes. Prepared sterilized medium was then poured into 90 mm diameter sterile petri dishes to a depth of 4 mm (about 25 ml per plate). The plated petri dishes were kept on a plane surface to avoid non–uniform solidification of medium. All these operations were performed in a sterile room fitted with laminar flow. The petri dishes were dried at 35–37° C in an incubator for about 30 minutes.

Sterile loops of about 4 mm diameters were used to apply a loopfull of the test organism and the suspension was placed at the center of the petri dishes. A sterile dry cotton wool swab was used to spread the inoculum evenly on the dishes, which were then incubated for 15 min. Discs of 6.35 mm in diameter were punched from a sheet of Whatman Filter Paper No. 1 and placed in petri dish, allowing a distance of 2 - 4 mm between

each disc and sterilized in a hot air oven at 160° C for 1 hrs. Sterilized discs were then impregnated with the prepared stock solution of the test compound. These discs were then dried in an oven at 25° C. Antimicrobic discs were applied to the surface of the plates with sterile forceps. The spatial arrangement of the discs was such that they were not closer than 15 mm from the edges of the dishes to prevent overlapping of the zones of inhibition. The discs were not moved once they came in contact with agar surface. Each test compound was applied in triplicate and the zone of inhibition was determined by taking its average. Simultaneous discs were prepared for the control and the standard drugs. The petri discs were incubated at 37° C for 24 hrs in case of bacteria and at 30° C for 48 hrs for fungi and yeast. Zone of inhibition was measured from the edge of the disc to the edge of the zone by a multimeter scale.

RESULTS AND DISCUSSION

Antibacterial activity

2-(3-phenyl-6,8-disubstituted-4-oxo-(3H)quinazolinyl)-substituted phenyl sulphones were screened for the antibacterial activity at two concentration levels i.e. 125 µg/mL and 250 µg/

Fig. 1: Synthetic route for the synthesis of sulphones

J. Pure & Appl. Microbiol., 4(2), Oct. 2010.

mL respectively. The compounds have displayed some activity (Table 2).

shown by two compounds $(3_f \text{ and } 3_g)$ against the

Maximum inhibition (20-24 mm) was

two gram negative bacteria *E. coli* and *S. typhi*. Compound 3_f was highly active at both the concentrations.

Only two sulphones i.e. 3_{b} and 3_{f} were

S.No.	Compound	M.P.	R ₁	R ₂	R ₃
1.	2	205	Н	Н	C ₆ H ₄ NO ₂
2.	2 [°] _b	200	Н	Н	$C_6H_3(NO_2)$
3.	2	170	Н	Н	$C_6H_4CH_3(0)$
4.	2 _d	185	Н	Н	$C_6H_4CH_3(p)$
5.	2°	198	Н	Н	C ₆ H ₅ CH,
6.	2 _f	190	Br	Br	C ₆ H ₄ NO ₂
7.	2	210	Br	Br	$C_6H_3(NO_2)$
8.	3	240	Н	Н	C ₆ H ₄ NO,
9.	3 "	240	Н	Н	$C_6H_3(NO_2)$
10.	3 ິ	227	Н	Н	$C_6H_4CH_3(0)$
11.	3 _d	232	Н	Н	$C_6H_4CH_3(p)$
12.	3	221	Н	Н	C ₆ H ₅ CH,
13.	3 _f	210	Br	Br	C ₆ H ₄ NO,
14.	3 [°] _g	228	Br	Br	$\tilde{C_6H_3}(\tilde{NO_2})_2$

Table 1.

% yield ranged between 60 - 70%

Table 2. Antimicrobial activity

Compound No.	Concentration		Antibac	terial	Antifung	gal
		E. coli	S. typhi	S. aureus	Penicillium	A. flavus
3	125	±	±	±	±	_
a	250	±	±	±		
3,	125	±	±	+	+	_
Ь	250	±	±	+	+	
3	125	±	±	±	+	±
c .	250	±	±	±	+	±
3 _d	125	±	±	±	±	±
u	250	±	±	±		
3	125	±	—	±	±	-
c	250	±	±	±		
3 _f	125	++	++	+	±	±
1	250	++	±	±		
3	125	++	±	±	±	±
5	250	±	±	±		

Disc	size	6.35	

Duration : 24–48 hrs. Control : DMF Duration : 72 hrs.

Control : DMF

- : Inactive (heavy fungal colony)
 - : Inactive (heavy fungal colony)
 + : Moderately Active (8–12mm)
 + : Active (15–19mm)
 + : Active (15–19mm)
 + : Active (15–19mm)
 + : Active (one fungal colonies)
 + : Active (one fungal colony)
 + : Active (13–35mm)
 + : Highly Active (No fungal colony)
 Standard : Griseofulvin, Gentamycin 10 µg/disc

		Table 5: Site	ieturur i urur	neters		
Compound	MIC E 125	LOG (1/MIC) E125	PIE	MR	POLAR	SIGMA
3	12	-1.079181246	-0.28	11.48	0.67	0.78
3	12	-1.079181246	-0.56	22.96	1.34	1.56
3	12	-1.079181246	0.56	5.65	-0.04	-0.17
3	12	-1.079181246	0.56	5.56	-0.04	-0.17
3	12	-1.079181246	0.05	4.65	0	0
3 .	6	-0.77815125	-0.28	11.48	0.67	0.78
3	6	-0.77815125	-0.56	22.96	1.34	1.56
Compound	MIC E 250	LOG (1/MIC) E250	PIE	MR	POLAR	SIGMA
3	12	-1.079181246	-0.28	11.48	0.67	0.78
3.	12	-1.079181246	-0.56	22.96	1.34	1.56
3	12	-1.079181246	0.56	5.65	-0.04	-0.17
3.	12	-1.079181246	0.56	5.56	-0.04	-0.17
3	12	-1.079181246	0.05	4.65	0	0
3	6	-0.77815125	-0.28	11 48	0.67	0.78
3	12	-1 079181246	-0.56	22.96	1 34	1.56
Compound	MIC E 125	LOG (1/MIC) E125	PIE	MR	POLAR	SIGMA
3	12	_1 079181246	_0.28	11 48	0.67	0.78
3	12	-1.079181246	-0.56	22.96	1 34	1.56
3	12	-1 079181246	0.56	5.65	-0.04	-0.17
3°	12	-1 079181246	0.56	5.65	-0.04	-0.17
3 d	12	-1 079181246	0.05	4 65	0.04	0.17
3	6	_0 77815125	_0.28	11 48	0.67	0 78
3 Sf	6	1.079181246	0.20	22.96	1.3/	1.56
Compound	MIC E 250	$I \cap G (1/MIC) = 50$	-0.50 PIE	22.90 MR	POLAR	SIGMA
2	12	1 079181246	0.28	11 / 8	0.67	0.78
3 2	12	1 070181246	-0.28	22.06	1.34	0.78
3 _b	12	1.070181240	-0.50	22.90	0.04	0.17
3 2	12	-1.079181240	0.50	5.05	-0.04	-0.17
3 _d	12	-1.079181240	0.0	5.50	-0.04	-0.17
3°2	12	-1.079181240	0.03	4.05	0	0 78
5 _f	12	-1.079101240	-0.28	22.06	0.07	0.78
\mathcal{S}_{g}	12 MICE 125	-1.0/9181240	-0.30 DIE	22.90	1.34 DOLAD	1.30
Compound 2	MIC E 125	LOG (1/MIC) E125	PIE	MR 11.49	POLAR	SIGMA
\mathcal{S}_{a}	12	-1.0/9181240	-0.28	11.48	0.07	0.78
3 _b	8	-0.903089987	-0.50	22.90	1.34	1.50
3	12	-1.0/9181246	0.56	5.65	-0.04	-0.17
3 _d	12	-1.0/9181246	0.56	5.56	-0.04	-0.17
3	12	-1.0/9181246	0.05	4.65	0	0
3 _f	8	-0.90308998/	-0.28	11.48	0.67	0.78
3 _g	12	-1.079181246	-0.56	22.96	1.34	1.56
Compound	MIC E 250	LOG (1/MIC) E250	PIE	MR	POLAR	SIGMA
3 _a	12	-1.079181246	-0.28	11.48	0.67	0.78
3 _b	8	-0.903089987	-0.56	22.96	1.34	1.56
3 _c	12	-1.0/9181246	0.56	5.65	-0.04	-0.17
3 _d	12	-1.0/9181246	0.6	5.56	-0.04	-0.17
3	12	-1.079181246	0.05	4.65	0	0
3 _f	12	-1.079181246	-0.28	11.48	0.67	0.78
3 _g	12	-1.079181246	-0.56	22.96	1.34	1.56

 Table 3. Structural Parameters

moderately active (15–19 mm) zone of inhibition against *S. aureus*. The other derivatives did inhibit the growth of these strains but with a lesser radii (8–10 mm). However compound 3_e was inactive at 125 µg/disc against *S. typhi*.

A comparative study shows that presence of a nitro substituent $(3_b, 3_f \text{ and } 3_g)$ have enhanced the activity.

Antifungal Activity

Among the sulphones only one compound 3_b showed maximum activity against Penicillin with development of no fungal colony, followed by compound 3_c , with only one fungal colony. The other derivatives i.e. 3_a , $3_d - 3_g$ were

less active.

Against *A. flavus*, the sulphones 3_a , 3_b and 3_e were inactive. The other derivatives 3_c , 3_d , 3_f and 3_g showed some activity with only 2-3 fungal colonies being developed after 72 hrs.

Again the nitro group has been found to be responsible for the antifungal activity.

QSAR Studies

The QSAR studies of the antibacterial activity¹²⁻¹⁴ have also been done. The Minimum Inhibitory Concentration MIC for *E. Coli* (MIC_E), *S. Typhi* (MIC_S) and *S. aureus* (MIC_{SA}) were measured and transformed percent zone of inhibition in mm at the fixed concentrations i.e.

Table 4.	Correlation	Matrix

	LOG (1/MIC)				
	E125	PIE	MR	POLAR	SIGMA
LOG (1/MIC) E125 PIE MR POLAR SIGMA	1.0000	-0.4951 1.0000	0.4410 -0.8548 1.0000	0.4906 -0.9233 0.9831 1.0000	0.4954 -0.9443 0.9737 0.9983 1.0000
E250 LOG (1/MIC) E250 PIE MR POLAR SIGMA	PIE 1.0000	LOG (1/MIC MR -0.1907 1.0000	C) POLAR -0.0348 -0.8548 1.0000	SIGMA 0.0767 -0.9233 0.9831 1.0000	0.0930 -0.9443 0.9737 0.9983 1.0000
LOG (1/MIC) E125 PIE MR POLAR SIGMA	E125 1.0000	LOG (1/MIC PIE -0.1907 1.0000	C) MR -0.0348 -0.8548 1.0000	POLAR 0.0767 -0.9233 0.9831 1.0000	SIGMA 0.0930 -0.9443 0.9737 0.9983 1.0000
LOG (1/MIC) E125 PIE MR POLAR SIGMA	E125 1.0000	LOG (1/MIC PIE -0.4940 1.0000	C) MR 0.4410 -0.8504 1.0000	POLAR 0.4906 -0.9197 0.9831 1.0000	SIGMA 0.4954 -0.9412 0.9737 0.9983 1.0000
LOG (1/MIC) E250 PIE MR POLAR SIGMA	E250 1.0000	LOG (1/MIC PIE -0.44454 1.0000	MR 0.4410 -0.8504 1.0000	POLAR 0.5566 -0.9197 0.9831 1.0000	SIGMA 0.5465 -0.9412 0.9737 0.9983 1.0000

 Table 5. Multiple Regression Model : LOG (1/MIC)
 E 125 = (-1.09217) + (0.008178)* MR

Model Summary	
R–Square	19.45%
R-Square Adjusted	3.34%
S (Root Mean Square Error)	0.144413

125 and 250 were correlated. The transformation of zone of inhibition to percentage inhibition was based on weightage value of 24 for one +ve, thus the percentage value of the compounds were fixed between 24 and 96%. The percentage (P) was considered in its logit transformation [log P/100-P)] log P_{E} or log P_{s}) of both the activity and the

Parameter Estimates						
Predictor Term	Coefficient	SE Coefficien	t T	Р	VIF	Tolerance
Constant	1.092169687	0.105339504	.10.388	0.0001		
MR	0.008177709	0.007442351	1.099	0.3219	1	1
		Analysis of Varia	nce for Model			
Source	DF	SS	MS	F		Р
Model	1	0.02518004	0.02518004	1.207		0.3219
Error	5	0.104275757	0.020855151			
Lack of Fit	3	0.013656699	0.004552233	0.1004	69662	0.9526
Pure Error	2	0.090619058	0.045309529			
Total (Model + Error)) 6	0.129456	0.021575966			

Multiple Regression Model : LOG (1/MIC) E 125 = (-1.05905) + (0.117033)* POLAR

Model Summary

24.07%

8.88%

0.140216

Durbin-Watson Test for Autocorrelatio	on in Residuals	Model Su
DW Statistic	0.938208	R-Square
P – Value Positive Autocorrelation	0.0505	R-Square Adjusted
P – Value Negative Autocorrelation	0.9438	S (Root Mean Square Error)

Parameter Estimates						
Predictor Term	Coefficient	SE Coefficient	Т	Р	VIF	Tolerance
Constant	1.059045524	0.074478289	.14.220	0.0000		
POLAR	0.117033	0.092971357	1.259	0.2837	1	1

Analysis of Variance for Model

Source	DF	SS	MS	F	Р
Model	1	0.031153772	0.031153772	1.585	0.2837
Error	5	0.098302025	0.019660405		
Lack of Fit	2	0.007682967	0.003841484	0.127175	0.8851
Pure Error	3	0.090619058	0.030206353		
Total (Model + Error)	6	0.129456	0.021575666		

642

Durbin-Watson Test for Autocorrelation in Residuals

Multiple Regression Model : LOG (1/MIC) E 125 = (-1.05266) + (0.095953)* SIGMA

DW Statistic P - Value Positive Autocorrelation	0.894810 0.0411	Model Summary	
P - Value Negative Autocorrelation	0.9496	R-Square	24.54%
		R-Square Adjusted	9.45%
		S (Root Mean Square Error)	0.139773

		Parameter Estin	nates			
Predictor Term	Coefficient	SE Coefficient	Т	Р	VIF	Tolerance
Constant	-1.052663391	0.070477436	-14.936	0.0000		
POLAR	0.095952766	0.075240432	1.275	0.2582	1	1

Analysis of Variance for Model

Source	DF	SS	MS	F	Р
Model	1	0.031773127	0.031773127	1.626	0.2582
Error	5	0.097682671	0.019536534		
Lack of Fit	2	0.007063612	0.003531806	0.116923	0.8935
Pure Error	3	0.090619058	0.030206353		
Total (Model + Error)	6	0.129456	0.021575966		

Durbin-Watson Test for Autocorrel	ation in Residuals
DW Statistic	0.923245

P - Value Positive Autocorrelation

P - Value Negative Autocorrelation

Multiple Regression Model : LOG (1/MIC) SA $125 = (-1.0674) + (0.06846)^*$ POLAR

0.923245	Model Summary	
0.0443	R-Square	24.07%
0.9417	R-Square Adjusted	8.88%
	S (Root Mean Square Error)	0.082020848

		F	Parameter Est	imates			
Predictor Term	Coefficient	SE	Coefficient	Т	Р	VIF	Tolerance
Constant POLAR	1.0674026 0.0684599	504 0.0 904 0.0)43587006)54384757	-24.500 1.259	0.0000 0.2637	1	1
		Analys	sis of Varianc	e for Model			
Source	DF	SS		MS	F		Р
Model Error	1 5	0.010660 0.033637)233 7098	0.010660233 0.00672742	1.585		0.2637
Lack of Fit Pure Error Total (Model + Error)	2 3) 6	0.002628 0.031008 0.044297	3966 3132 7331	0.001314483 0.010336044 0.007382888	0.1271	75	0.8851

SAH & KUMARI: ANTIMICROBIAL ACTIVITY OF SULPHONES

Durbin-Watson Test for Autocorrelation in Residuals

Multiple Regression Model : LOG (1/MIC) SA 125 = (-1.06367) + (0.056129)* SIGMA

DW Statistic	2.671
P - Value Positive Autocorrelation	0.7978
P - Value Negative Autocorrelation	0.1223

у
24.54%
9.45%
0.081762053

		Parameter Estin	nates			
Predictor Term	Coefficient	SE Coefficient	Т	Р	VIF	Tolerance
Constant POLAR	-1.063669295 0.05612877	0.041226657 0.044012831	-25.801 1.275	0.0000 0.2582	1	1

Analysis of Variance for Model					
Source	DF	SS	MS	F	Р
Model	1	0.010872164	0.010872164	1.626	0.2582
Error	5	0.033425166	0.006685033		
Lack of Fit	2	0.002417035	0.0011208517	0.116923	0.8935
Pure Error	3	0.031008132	0.010336044		
Total (Model + Error)	6	0.044297331	0.007382888		

Durbin-Watson	Test fo	r Autocorrelatio	n in	Residuals

DW Statistic	2.683
P - Value Positive Autocorrelation	0.8019
P - Value Negative Autocorrelation	0.1176

Multiple Regression Model : LOG (1/MIC)
SA 125 = (-1.115) + (0.005076) * MR

Model Summary	
R-Square	36.51%
R-Square Adjusted	23.81%
S (Root Mean Square Error)	0.058096245

Parameter Estimates						
Predictor Term	Coefficient	SE Coefficient	Т	Р	VIF	Tolerance
Constant POLAR	-1.115 0.005076285	0.042377239 0.002993998	-26.323 1.695	$0.0000 \\ 0.1508$	1	1

Analysis of Variance for Model

Source	DF	SS	MS	F	Р
Model	1	0.00970253	0.00970253	2.875	0.1508
Error	5	0.016875868	0.003375174		
Lack of Fit	3	0.001371802	0.000457267	0.058966784	0.9768
Pure Error	2	0.015504066	0.007752033		
Total (Model + Error)	6	0.0265578368	0.004429733		

SAH & KUMARI: ANTIMICROBIAL ACTIVITY OF SULPHONES

Durbin-Watson Test for Autocorrelation in Residuals

Multiple Regression Model : LOG (1/MIC) SA 125 = (-1.08789) + (0.060165)* POLARR

		(1.00707) (0.000105)	1 OL/ HUI	
DW Statistic P - Value Positive Autocorrelation	1.557 0.2173	Model Summary		
P - Value Negative Autocorrelation	0.6963	R-Square	30.98%	
		- R-Square Adjusted	17.17%	
		S (Root Mean Square Error)	0.060572144	

Parameter Estimates							
Predictor Term	Coefficient	SE Coefficie	nt T	Р	VIF	Tolerance	
Constant	-1.0878897	0.0321741	-33.813	0.0000			
POLAR	0.060165085	0.04016297	5 1.498	0.1944	1	1	
		Analysis of Vari	ance for Model				
Source	DF	SS	MS	F		Р	
Model	1	0.008233475	0.008233475	2.244		0.1944	
Error	5	0.018344923	0.003668985				
Lack of Fit	2	0.002840857	0.001420429	0.2748	350	0.7770	
Pure Error	3	0.015504066	0.006168022				
Total (Model + Error) 6	0.026578398	0.004429733				

Durbin-Watson Test for Autocorrelation in Resid	uals
---	------

Multiple Regression Model : LOG (1/MIC) SA 250 = (-1.08376) + (0.047965)* SIGMA

DW Statistic	1.655	Model Summar	V
P - Value Positive Autocorrelation	0.2360	R-Square	29.87%
	0.0142	R-Square Adjusted S (Root Mean Square Error)	15.85% 0.06105575

		Parameter	Estimates			
Predictor Term	Coefficient	SE Coeffici	ent T	Р	VIF	Tolerance
Constant POLAR	-1.083763395 0.0307859 0.047964585 0.03286654		4 -35.203 8 1.459	5.2030.00001.4590.2043	1	1
		Analysis of Var	iance for Model			
Source	DF	SS	MS	F		Р
Model	1	0.007939376	0.007939376	2.13		0.2043
Lack of Fit	2	0.003134957	0.003727803	0.3033	803	0.7586
Pure Error Total (Model + Error)) 6	0.015504066 0.026578398	0.005168022 0.004429733			

... -

Durbin-Watson Test for Autocorrelation in Residuals

DW Statistic	1.651
P – Value Positive Autocorrelation	0.2306
P – Value Negative Autocorrelation	0.6161

MIC i.e. (log l/MIC), (log l/MIC_E); log l (MIC_S) and log l/MIC_{SA}. The structure activity analysis in terms of correlation between log l/MIC_E, log l/ MIC_S and log l/MIC_{SA} as dependent parameter while hydrophobic (p), steric (MR) electronic (s and polar) as independent parameters in the derivatives has been given in Table 3 & Table 4.

The statistical significance E 125 (F=1.207; MR); (F=1.585; Polar); (F=1.626; Sigma); against SA 125 (F=1.585; Polar); (F=1.62; Sigma); (F=2.875; MR); while of SA 250 (F=2.130; Sigma) were observed as calculated by the Regression analysis (Table 5). This shows that steric, hydrophobic and Sigma effect of the substituents against *E. coli* while also polarity, against *S. aureus* all had a combined effect on the activity.

ACKNOWLEDGEMENTS

The authors are thankful to the Head, Department of Botany, JNV University, Jodhpur for providing the facilities for the antimicrobial activity and Head, Department of Chemistry, JNV University, Jodhpur for the laboratory facilities.

REFERENCES

- Kar, A., Medicinal Chemistry New Age International (P) Limited Publisher, 3rd Edition, 1997; 393.
- Devi AM, Reddy AN, Sarangapani M, Reddy VM., Synthesis and antimicrobial evaluation of some new Imidazole–2–sulphones. *Indian J Hetero Chem* 1998; 7: 187-184.
- 3. Nair S, Garg SP, Sah P., Sulphones as antimicrobial agents. *Curr Agric* 2004; **28**(1-

2): 45-50.

- 4. Singh T, Sharma S, Srivastava VK, Kumar A., Synthesis, insecticidal and antimicrobial activities of some heterocyclic derivatives of quinazolinones. *Indian J Chem* 2006; **45**B: 2558-2565.
- Kumari N, Sah P., Synthesis and antibacterial activity of some 2-mercapto-3-phenyl-4-oxo-(3H)-quinazolinyl substituted 1,3',4'oxadiazoles. *Indian J Hetero Chem.*, 2008; 17: 331-334.
- Wagle S, Adhikari AV, Nalilu SK. Synthesis of some new-(3-methyl-7-substituted-2-oxo-5-(aryl)-1,3,4-oxadiazoles as potential nonsteroidal anti-inflammatory and analgesic agents. *Indian J Chem.*, 2008; 471B: 439-448.
- Pattan SR, Reddy VK, Mami FV, Desai BG, Bhat AR., Synthesis of N-3(4-chlorophenyl thiazole-2-yl)-(2-(amino)-methyl) – quinazolin-4(3H)-one and their derivatives for antitubercular activity. *Indian J Chem.*, 2006; 45B: 1778–1781.
- Dave GR, Mewada GS, Amin GC., 2-mercapto-3-substituted-phenyl quinazolin-4-ones. J Indian Chem Soc., 1960; 37(9): 595-596.
- 9. Catalogue of MTCC., Institute of Microbial Technology (IMTECH), Chandigarh, 1992; 109.
- Barry AL, The antimicrobial susceptibility test. Principles and practice, 1976; 180. *Chem Ab* 1977; 64: 25183.
- Bauer AW, Kirby WM, Sherris JC, Turk M., Antibiotic susceptibility testing by standardized single disc method. *Am J Clin Pathol.*, 1996; 44: 493-496.
- 12. Hausch C, Leo A, Exploring QSAR, Fundamentals and applications in Chemistry and Biology ACS, Washington, DC, 1995.
- Shah MD, Desai NC, Awasthi KK, Saxena AK., Synthesis and QSAR studies of 5-imidazolinone derivatives as potential antibacterial agents. *Indian J. Chem.* 2001; 40B: 201-208.
- Desai NC, Bhavsar AM, Shah MD, Saxena AK., Synthesis and QSAR studies of thiosemicarbazides, 1,2,4-triazoles, 1,3,4thiadiazoles and 1,3,4-oxadiazole derivatives as potential antibacterial agents. *Indian J. Chem.* 2008; 47B: 579-589.

646