Reviving the Coccoid Forms of H. pylori Serotypes

D. Esmaeilli1*, A. Mohabati Mobarez2 and N. Sotodeh2

1Department of Microbiology, Faculty of Medical Science, Baqiyatollah University, Tehran, Iran
2Department of Bacteriology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.

(Received: 05 May 2010; accepted: 12 June 2010)

Helicobacter pylori, the most common chronic bacterial infection, has shown in two significant structure; bacilli and coccoid form. The coccoid form has been detected as viable but not culturable form which forms in unfavorable situation to survive. This feature leads some problems especially during several sub-culturing the examining H. pylori serotypes. We were targeting this problem, based on finding a suitable environment for conversion the coccoid form to viable and culturable bacilli form.

Key words: Helicobacter pylori, coccoid form, revive, in vivo medium.

Helicobacter pylori is gram negative microorganism, microaerophilic that were colonized in stomach of approximately half of the world wide population, and case chronic gastritis, duodenal ulcers, MALT lymphoma and gastric cancer1. Three different forms of *H. pylori* has been detected; a viable spiral form, a viable coccoid form and a viable but not culturable form2-6. Although the coccoid form of *H. pylori* had been detected in both human stomach7 and natural environments8, it has been observed that *H. pylori* can transform from a cultivable spiral-shaped to a non-cultivable coccoid form in undesirable conditions. Aging, starvation, expose to air, prolonged incubation, improper temperature, proton pump inhibitors and antibiotic treatment are different unfavorable conditions which may lead to conversion spiral to coccoid form9.

So far, six *H. pylori* serotypes (O1 to O6) had been detected that serotype O2 LPS not express lewis antigen of blood group10. Coccoid form of *H. pylori* is recognized as viable but not-cultivable *H. pylori* and in this study we intent to revive coccoid forms of *H. pylori*12.

METHOD AND MATERIALS

Bacterial strains and culture. *H. pylori* strains ATCC 700392, SS1(Sydney Strian - custer, Holland), O2 serotype (awarded by Dr Graham, University of Washington, Seattle, Washington, Baylor College of Medicine and Houston, Texas, USA) and clinically isolated strains were used in this study. All *H. pylori* strains were cultured on Brucella agar plates with selective complements and incubated at 37°C in a CO2 incubator (memert, Germany), in a microaerophile situation, until the desired amount of growth was obtained after 3-5 days. The strains were identified as *H. pylori* based on the biochemical tests, microscopic morphology and PCR. A single primer pair was used to amplify *H. pylori* ureC gene based on Gene Bank to approve of *H. pylori* genus. F: 5'-CCCTCAGGCTCACTAGTCCCCAAGAAA-3’ and

* To whom all correspondence should be addressed.
R: 5'-AAGAAGTCAAAAACGCCCAAAAC-3' that enable amplify fragment to length of 417 bp (Fig. 1).\(^2\)

Two series of all strains were used in this study. The first group was stored in -70°C, in Brucella broth medium, containing supplements and 30% glycerol, for four years and the second group were incubates (3-5 hours) in air for studying the effects of aging and air on the conversion of the bacilli form of \(H. pylori\) to coccoid form, respectively.

In vivo culture. To examine in vivo re-conversion of coccoid \(H. pylori\) to bacilli and spiral form, bacterial suspension of coccoid \(H. pylori\), obtained under the induction situation in the previous experiment, was fed to BALB/c mice three times with \(1 \times 10^8\) CFU/ml \(H. pylori\) serotypes with coccoid forms, by gavage. Distinguishably, for neutralizing the acidic environment of stomach and surviving \(H. pylori\) strains in the mice stomach, 3% Sodium-bicarbonate was added to bacterial suspension. After ten-day, mouse groups, victim then the stomach, in order to prepare different dilutions (\(10^{-1}\) to \(10^{-4}\)), were extracted and cultured on the brucella agar medium. The plates were incubated at 37°C micro-aerophilic incubator and quantitation of CFU was performed 10 days.

We confirm the strains by biochemical, morphological and molecular tests.

Table 1. The results of culture \(H. pylori\) serotypes with coccoid forms 10 days after inoculation in BALB/C model by oral

<table>
<thead>
<tr>
<th>Serotypes</th>
<th>CFU/ml by oralDuring Three times</th>
<th>CFU/ml Number of (H. pylori), 10 days after inoculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS1</td>
<td>(3 \times 10^8)</td>
<td>(10^{11})</td>
</tr>
<tr>
<td>ATCC700392</td>
<td>(3 \times 10^8)</td>
<td>(10^8)</td>
</tr>
<tr>
<td>Clinical</td>
<td>(3 \times 10^8)</td>
<td>(10^9)</td>
</tr>
<tr>
<td>O2</td>
<td>(3 \times 10^8)</td>
<td>(10^8)</td>
</tr>
</tbody>
</table>

CFU: Colony Formation Unit, ml: milliliter, NC: None Cultured

RESULTS

Determination of coccoid forms under various environmental conditions. Bacterial morphology was analyzed in Gram-stained by optical microscope, after facing different environmental situation. All \(H. pylori\) strains (ATCC 700392, SS1, O2 serotype and clinically isolated strains) converted from spiral or bacilli to coccoid form. None of strains were grown on the enriched brucella agar medium.

The total number of bacteria was determined on plates of different dilutions (between \(10^{-1}\) to \(10^{-4}\)) for each strain (Table 1).
CONCLUSION

Helicobacter pylori have been detected in different morphological forms. In human stomach, it lives almost in bacilli form as a dominant form. Cocoid form of H. pylori is an adaptive form that by exposing to unfavorable situation such as aging, high temperature, cold starving, aerobiosis, prolonged incubation and others, may convert to this form.

So far investigations in field of reduction of cocoid forms have not reported but for optimization of H. pylori culture were published paper several (12-19).

In study, optimization of Helicobacter pylori culture was carried by Mohabati Mobarez et al in Tarbiat Modares University, Tehran, IRAN, in order to prepare favorable antigens set up and modified medium for both cocoid and spiral form of H. pylori which were observed in stomach while cocoid forms viable but non culturable.

Conversion to cocoid form is a escape tactic from undesirable conditions which microorganisms exert to survive.

According to the conversion of the spiral and bacilli form of H. pylori to cocoid state, by exposing to unsuitable situation, we exerted different ways for reviving and reconverting the organism to culturable form. In previous study we were able to inhibit the formation of cocoid form by optimizing H. pylori growth medium and subsequently in recent study we revived cocoid forms in BALB/c stomach(Table 1). Revived rate in H.pylori ss1 equiv al to 0.003log, ATCC700392 equiv al to 3.3log, Clinical equiv al to 3.3log, Serotype O2 equiv al to 3.3log.

H. pylori ss1 because of mouse adaptation revived rate is more than others.

In this study we used mouse gastric environment as in vivo culture medium. Significantly, Helicobacter pylori serotypes were able to convert to revived and culturable form, in this natural condition. During a period of ten days, H. pylori serotypes adapt to in vivo condition which can probably repair the enzymatic deficiency. Collectively, we recommend using in vivo medium to revive the studying H. pylori serotypes. Subsequent to antigen variation, cocoid form face alteration in LPS and proteins profile, indeed reviving serotype supposed to be necessary for scientists.

ACKNOWLEDGMENTS

This work was supported by the Tarbiat Modares University Research Center

REFERENCES

