Isolation and Characterization of Vegetable Oil Degrading Yeasts

Prajakta P. Kamble*, Avinash A. Raut and M.B. Gandhi

Department of Microbiology, Yashwantrao Chavan College of Science, Karad, Vidyanagar, Karad- 415 124, India.

(Received: 04 July 2010; accepted: 30 August 2010)

For the present study the suitable vegetable oil contaminated samples were collected from Kolhapur and Karad cities, in India. Four quadrant streak plate technique was used for the isolation and characterization of efficient vegetable oil degrading strains that had ability to grow on 1% vegetable oil concentration on Bushnell and Hass agar plates. These isolated strains namely $KopY_1$ and $KRDY_1$ were identified by morphological and biological tests and were found to belong to Genus: *Saccharomyces*. They were also able to grow on media containing up to 8% vegetable oil concentration.

Key words: Oil contaminated samples, Vegetable oil, Yeasts.

Vegetable oils usually extracted from seeds are used by man from ancient time on large scale at household as well as at industrial level important products used pharmaceutically, industrially and nutritionally.

These oils have various properties like high caloric value, It makes the ingredient stick less to each other, It can also carry flavours to other ingredients in food; hence they are directly used as ingredients in food⁵.Vegetable oils are used for preparing concentrated solutions of vitamin A and D in pharmaceutical industries. The groundnut oil emulsion has been used successfully to control many insect pests of plants. Many vegetable oils are used to make soaps, candles, perfumes, cosmetic products, insulators, biodiesel etc. ⁷. So the production, use and transportation of vegetable oils is rapidly growing around the world.

The oily wastes of vegetable origin generated from house, canteens, army bases, restaurants, pharmaceutical industries and various other industries contribute their fair share towards environmental pollution⁸ as these waste products are responsible for clogging sewer networks, grease trap formation and accumulation of toxic substances in environment contaminating public water bodies and adversely affecting human health⁹.

Hence the aim of this study was to screen the efficient yeast capable of utilizing vegetable oil as the sole 'C' and energy source that can be used to solve the problem caused due to accumulation and putrefaction of the oils.

MATERIALAND METHODS

Collection of samples

Two oily samples were collected soil near oil mill machine Shree Oil Mills, Kolhapur and oily scrapping around oil lamp in Hanuman Mandir, Banawadi Road, Karad.

^{*} To whom all correspondence should be addressed. E-mail:prajakta14@rocketmail.com

These samples were tested for the presence of vegetable oil degrading yeast. Isolation

Isolation of vegetable oil degrading organism was performed on Bushnell and Hass medium containing vegetable oil as the sole 'C' and energy source, using four quadrant streak plate method. Plates were incubated at room temperature for 6 days. Yeast colonies after Gram staining were transferred on Glucose Yeast Extract agar and

Table 1. Collection of Samples and Coding of Isolation				
Samplecode	Source of sample	IsolatedCode		
Kop KRD	Soil near Oil Mill Machine, Shree Oil Mills, Kolhapur. Oily Scrapping around oil lamp in Hanuman Mandir, Banawadi Road, Karad.	KopY ₁ KRDY ₁		

Table 2.	Colony	Morphology	of Yeast isolates

IsolateCode	Size(mm)	Shape	Colour	Margin	Elevation	Opacity	Consistency
KopY	2	circular	White	Serrate	LowConvex	Opaque	Moist
KRDY ₁	1	circular	White	Entire	LowConvex	Opaque	Sticky

Table 3. Biochemical Chara	cteristic of yeast isolates
----------------------------	-----------------------------

Characters	Isolate	es
	KopY ₁	KRDY ₁
.Gram Nature .Shape of the cell .Budding/Fission	Gram positive Ellipsoidal Budding	Gram positive Elongated Budding
.Pellicle formation	+	+
Acid production	+	+
.Osmophilicity	+	+
H_2 S production	+	+
Nitrate reduction test	+	+
.Catalase	+	+
.Oxidase	+	+
.Urea hydrolysis	-	-
.Starch hydrolysis	-	+
.Gelatin hydrolysis .Caseinase	-	+
	-	+
.Lipase .Chitinase	+	+
.Pectinase	+	
.Cellulase	+	+
.Carbohydrate fermentation	I	I
Glucose	+	+
Lactose	+	-
Sucrose	+	+
Melibiose	+	+
Maltose	+	+
Galactose	+	+
Raffinose	-	+

+ = positive test; - = negative test

J. Pure & Appl. Microbiol., 5(1), April 2011.

356

Table 4: Physiological characteristics

Isolate Code			Temperatu	ire		
	4°C	15°C	28°C	37°C	45°C	55°C
KopY,	-	_	+++	+++	++	+

+++

Table 4.1. Effect of temperature on growth of isolates

+++ = Rich growth; ++ = Good growth; + = Growth; - = No growth

Table 4.2. Effect of pH on growth of isolate	S
--	---

Isolate Code	рH				
	3	5	7	9	11
KopY ₁ KRDY ₁	+ +	+ +	+++ +++	+ +	+ +

+++ = Rich growth; ++ = Good growth; + = Growth; - = No growth

Salt Concentration %	Isolate	Isolates		
	KopY ₁	KRDY ₁		
1	+++	+++		
2	+++	+++		
2 3	+++	+++		
4	++	++		
5	++	++		
6	++	++		
7	++	++		
8	+	+		
9	+	+		
10	-	+		
11	-	+		
12	-	-		
13	-	-		
14	-	-		
15	-	-		
16	-	-		
17	-	-		
18	-	-		
19	-	-		
20	-	-		

Table	4.3. Effect of salt concentrations
	on growth of isolates

KRDY,

+++= Rich growth; ++= Good growth; += Growth; -= No growth

incubated at room temperature for 24 hrs. Slants of pure cultures were maintained at 4°C.

Characterization of isolates

+++

Identification and Characterization of yeast isolates was performed using colony characters, Gram nature, budding/fission mechanism, acid production, pellicle formation and Osmophilicity. For biochemical characterization of isolates following tests were performed as described by Gibbs and Salle like catalase, oxidase, urease, caseinase, lipase, chitinase, pectinase, cellulase production, sugar fermentation, nitrate reduction, hydrogen sulphide production, gelatin liquefaction and starch hydrolysis.

Physiological characterization of isolates

Effect of various temperatures, pH, NaCl concentrations up to (20%) and vegetable oil concentrations up to (8%) on the growth of isolates was studied.

RESULTS AND DISCUSSION

Two yeast cultures were isolated from vegetable oil contaminated samples by four quadrant streak plate technique. According to morphological, biological and physiological characteristics, cultures namely KopY₁ and KRDY₁ seem to belong to Genus: *Saccharomyces*.

J. Pure & Appl. Microbiol., 5(1), April 2011.

Isolate Code			Vegetab	ole Oil Conce	entration %			
	1	2	3	4	5	6	7	8
KopY1	+++	+++	+++	+	+	+	+	+
KRDY ₁	+++	+++	+++	++	++	++	+	+

Table 4.4. Effect of vegetable oil concentrations on growth of isolates

+++ = Rich growth; ++ = Good growth; + = Growth; - = No growth

The isolates namely KopY_1 and KRDY_1 have the ability to grow on vegetable oil concentration up to 8% and temperature up to 55°C. They also tolerated acidic as well as alkaline pH. Both were osmophilic and produced cellulase enzyme.

Isolate $KopY_1$ also produced pectinase and could tolerate salt concentration up to 9% .Isolate $KRDY_1$ showed growth up to 11% salt concentration.

CONCLUSION

Two yeast strains namely KopY1 and KRDY₁ seem to belong to Genus: *Saccharomyces* were isolated from two samples contaminated by vegetable oil collected from Kolhapur and Karad cities. Isolation was carried out using Bushnell and Hass medium containing vegetable oil as sole source of carbon.

Both the isolates from vegetable oil contaminated sites are able to utilize the vegetable oils namely soybean oil, cottonseed oil and groundnut oil up to 8% for growth. They were osmophilic, produced cellulase and could tolerate high temperature and extreme pH conditions. Thus, these cultures may be used for actively treating vegetable oil contaminated wastes. This will help in solving the clogging and back up problem of sewer lines.

ACKNOWLEDGMENTS

The authors are thankful to the Principal and the Management of Yashwantrao Chavan College of Science Karad for the facilities provided to make this research fruitful.

REFERENCES

- 1. Atlas, R.M., "Handbook of Microbiological Media" CRC Press, London 1993.
- Aneja, K.R., "Experiments in Microbiology, Plant Pathology and Tissue Culture" Wishwa Prakashan 1993.
- 3. Farshad Dervishi, Nahvi Iraj, Zarkesh Esfahani Hamid and Fariborz M., 'Effect of Plant Oils upon Lipase and Citric acid Production in Yarrowia lipolytica yeast." Journal of Biomedicine and Biotechnology. 2009.
- Gibbs B.H.and Shapton D.A., "Identification Methods for Microbiologist." (Gibbs and Shapton) U.S. Edition, Academic press INC New York 1968.
- Potter N.N. and Hotchkiss J. H., "Food Science" 5th Ed. Chapman and Hall; 1995; pp: 359-380.
- Salle A.J., "Fundamental Principles of Bacteriology" 7th Ed. Tata Mac Graw Hill. 1974; pp:143-184.
- Sambamurty A.V.S.S. and Subrahmanyan N. S., 'Oil Seeds' *In* "A Text Book of Economic Botany" V.S.Johri, Wiley Eastern Limited, New Delhi. 1989; pp168-231.
- Saifudin N., Chau K.H., "Biodegradation of lipid rich waste water in Combination of Microwave Irradiation and Lipase Immobilization on Chitosan." *Biotechnol* 2006; 5(3); 315-323.
- Sugimori Daisuke, "Edible Oil Degrading by using yeast co-culture of *Rhodotorula pacifica* STB411 and Cryptococcus laurentii ST 3412."Microbial Biotechnol; 2009; 351-357.

J. Pure & Appl. Microbiol., 5(1), April 2011.