Homology Modeling and *In silico* Approach for Identification of Probable Substrates for the Enzyme Laccase from *Pleurotus ostreatus* for Bioremediation

P. Ravindra Babu^{1*}, Ganugapati Jayasree¹, S. Siva Rajesh¹, K.S.R. Siva Sai¹ and K.B. Reddy²

¹Department of Biotechnology, Sreenidhi Institute of Science and Technology, Yamnampet, Hyderabad - 501 301, India. ²Professor of Environmental Sciences (Retd), Acharya Nagarjuna University, Nagarjuna Nagar - 522 510, India.

(Received: 25 August 2010; accepted: 05 October 2010)

Phenol oxidase (benzenediol O₂:oxidoreductase [EC 1.10.3.2], namely, Laccase) Pleurotus ostreatus catalyzes the oxidation of various aromatic compounds (mono-, di, and polyphenols, aminophenols, and diamines) by reducing molecular oxygen to water through an oxidoreductive multicopper system. It is one of the well studied enzyme used for bioremediation of xenobiotics. Its broad substrate specificity offers a wide opportunity for screening pollutants inorder to predict potentical targets for degradation. Present study utilizes protein - ligand docking as tool to achieve it. Homology modeling of the enzyme Laccase from Pleurotus ostreatus has been performed based on the best hits from NCBI BLAST against PDB database. The crystal structures of Laccase of Trametes versicolor (PDB ID 1GYC_A) and Rigidoporus lignosus (PDB ID 1KYA_A, 1V10_A) from Protein Data Bank were identified as suitable templates which revealed high level of sequence identities respectively. A comparative assessment of secondary structure using SSM web server revealed greater percentage of residues in beta sheets. A three-dimensional model was generated using MODELLER9v7 based on multiple templates (PDB ID's 1GYC A, 1KYA_A, 1V10_A). Protein sequence alignment was performed using CLUSTALW 2.0.8. With the aid of molecular mechanics method using force field AMBER the final model was obtained. Inspection and analysis of the final model was made by PROCHECK, VERIFY3D graph, PROVE Program. After the prediction of 3-dimensional model of Laccase, the possible active site of Laccase was determined using CASTp web server. The three dimensional structures of ligands (substrates and pollutants) including all hydrogen atoms, were built and minimized using the Dundee PRODRG2 Server. Toxicity studies were carried out using the web server OSIRIS Property Explorer in which the Mutagenic, Tumorigenic irritation and reproductive effects of the ligands were analysed. The Docked complexes were validated based on the GOLD Scoring function to pick out the best substrates for Laccase, suggesting that it might be able to oxidize these pollutants.

Keywords: Laccase, Homology Modeling, Docking, Toxicity risk.

Abbreviations: ABTS, 2,20-azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid; AMBER, assisted model building with energy refinement; E.C., enzyme commission number; GOLD, genetic optimisation for Ligand docking; NCBI, National Center for Biotechnology Information; PDB, Protein Data Bank; RMSD, root mean square deviation, SSM, Secondary Structure Matching; CASTp, Computed Atlas of Surface Topography of protein.

* To whom all correspondence should be addressed. E-mail: pottirb@gmail.com Laccase (p-diphenol: oxygen oxido reductases (EC 1.10.3.2)) from *Pleurotus ostreatus* (*P.ostreatus*) belongs to a group of polyphenol oxidases containing copper atoms in the catalytic centre which are usually called multicopper oxidases. Laccase is a dimeric or tetrameric glycoprotein, which usually contains four copper atoms per molecule of enzyme (monomer) distributed in three different copper binding (redox) sites. These are crucial for numerous reactions in cell like pathogenicity; immunity and morphogenesis of organisms and in the degradation of various aromatic compounds (e.g.nitroaromatics, chloroaromatics, polycyclic aromatics, biphenyls and components of oil) with the eventual goal of exploiting their metabolic potential for the bioremediation of contaminated sites¹⁻³.

The copper atoms allow the proteins to perform electron transfer reactions, because copper atoms are able to switch their oxidation states between Cu¹ and Cuⁿ. Therefore, many researchers have studied both the degradation as well as the removal of environmental pollutants by these enzymes. Among the blue copper oxidases, laccases are a sub class of comparatively broader substrate specificity enzymes known to degrade several xenobiotics such as phenols, anilines, benzenethiols, etc.⁴. Consequently, laccases have evoked particular interest in biotechnological applications, ranging from biopulping⁵ to remediation of wastewater⁶. Most of these enzymes are extra cellular in nature. In some species, they occur as isozymes in both extra- and intracellular environments.

Laccases have been reported in fungi 7, in plants⁸ and in bacteria⁹. The catalytic properties of Laccase have had a great impact on the development of biosensors. Advances in research have widened the variety of xenobiotics that can be degraded by laccases from simple phenols, anilines and benzenethiols to polycyclic aromatic hydrocarbons, organophosphorus and insecticides¹⁰. Their role in synthesis and/or degradation of the biopolymer lignin is well known. X-ray crystal structure studies over the past decade have enabled the elucidation of a significant number of structural and functional aspects of these enzymes. Due to their comparatively broader substrate specificity, Laccases share a sequence pattern that can distinguish them as a specific subgroup of multicopper oxidase family¹¹. As the substrate specificity differs from one Laccase to other, Laccase from different sources can be utilized for degrading different pollutants. Although docking has been successfully used for drug screening¹².

Three Dimensional Structure of the enzyme Laccase from *P.ostreatus* is not available in the public domain databases as predicted by X – ray crystallography and NMR. An attempt has been made to predict the three dimensional structure of the same using homology modeling.

MATERIALAND METHODS

Protein family and domain Prediction

The protein sequence of Laccase from *P. ostreatus* (accession number: Q12729) was retrieved from Swissprot database. The positions of the protein functional family and domains of *P.ostreatus* Laccase were predicted using PFAM¹³ and INTERPROSCAN¹⁴.

3D model building

The query sequence of P. ostreatus Laccase was searched to find out the related protein structures to be used as templates by the NCBI BLAST (Basic Local Alignment Search Tool)15 program against PDB¹⁶. Sequences that showed maximum identity with high score and less E-value were aligned and were used as reference structures to build 3D model for *P.ostreatus* Laccase. A model of P.ostreatus Laccase was generated using multiple templates¹⁷. The initial model of *P.ostreatus* Laccase was built by using homology-modeling methods and the MODELLER 9v7¹⁹. The parameters set for MODELLER 9v7 is shown in Table 1. The pdfs restrain C^{α} - C^{α} distances, mainchain N-O distances, and main-chain and sidechain dihedral angles. Hetero atoms (Cu) present in the reference structure (template with highest similarity) were transferred into the generated model by setting the program '*env.io.hetatm=True*' (Table 2). The 3D model of a protein was obtained by optimization of the molecular pdf such that the model violates the input restraints as little as possible. The molecular pdf is derived as a combination of pdfs restraining individual spatial features of the whole molecule. The optimization procedure is a variable target function method that applies the conjugate gradients algorithm to positions of all non hydrogen atoms. The coordinates for the structurally conserved regions (SCRs) for *P.ostreatus* Laccase were assigned from the templates using multiple sequence alignment

J. Pure & Appl. Microbiol., 5(1), April 2011.

(using ClustalW program ¹⁸) as shown in Fig.1. Energy minimization of the developed model was performed using AMBER force field²⁰. A comparative assessment of secondary structure was done by using protein structure comparison service Secondary structure Matching (SSM)³⁰. The final structure obtained was analyzed by Ramachandran plot using PROCHECK (a program to check the stereo chemical quality of protein structures)²¹, and environment profile using VERIFY-3D (structure evaluation server)²², and PROVE program ²³. This model was used for the identification of active site and for docking studies. **Binding-site analysis**

The Binding-site of *P.ostreatus* Laccase was identified using CASTP server²⁴. CASTp identifies and measures pockets and pocket mouth openings, as well as cavities. The program specifies the atoms lining pockets, pocket openings, and buried cavities, and the area and circumference of mouth openings. The results obtained were used for protein–ligand docking.

Docking

Nearly 600 phenolic compounds (substrates and pollutants) were selected as ligands for Docking Studies from NCBI Pubchem Database. Three dimensional structures of these compounds were built in mol2 format using the Dundee PRODRG2 Server. Docking of each Ligand with the protein *P.ostreatus* Laccase was performed using GOLD 3.0 [Genetic Optimisation for Ligand Docking]²⁵, which was set to 30 cycles of run. A point was defined representing the center of the active site residues, from the knowledge of the crystal structure of protein (taken from the mean of the X, Y, and Z coordinates of all the active site molecules). From this point, the search was carried out in 10 Å radius (since this was found to be the optimum). The annealing parameters for Van der Waal's and hydrogen bonding were set to 4.0 Å and 2.5 Å respectively.

The parameters used for genetic algorithm were population size (100), selection pressure (1.1), number of operations (1,00,000), number of islands (5), niche size (2), migrate (10), mutate (95) and cross-over (95) (all default values). **Prediction of Toxicity Risk of the compounds used for Docking Studies**

OSIRIS Property Explorer²⁶ a program that calculates very useful parameters like cLogP, solubility, and molecular weight. In the present work Molecular weight, Mutagenic property, tumorigenicity, irritant effects, effects on reproduction and Aqueous solubility (logS Value) predicted results were included in the Table 5.

RESULTS AND DISCUSSION

The homology model of *P.ostreatus* Laccase enzyme was generated using three templates (*PDB ID:* 1GYC_A) from *Trametes versicolor*²⁷, (*PDB ID:* 1KYA_A)²⁸ and 1V10_A)²⁹ from *Rigidoporus Lignosus.* They had a high percentage of sequence identity (66%, 64% and 60%) respectively as shown in Fig 1.

The final model was thus generated using the above mentioned templates as indicated in Fig.2

The amino acids interacting with Cu atoms were observed to be HIS, CYS, ILE, at different positions as indicated in Table 2.

Table 1. Options used in MODELLER 9v7 program

alnfile = 'alignment.ali', #	# alignment filename
knowns = '1 GYC, 1KYA	, 1V10', # codes of the templates
sequence = 'Laccase')	# code of the target

Table 2. Cu atom interactions inside the generated model

Atom	Amino Acid 1	Amino Acid 2	Amino Acid 3	Amino Acid 4
Cu	HIS402	CYS459	HIS464	ILE461
Cu	HIS120	HIS405	HIS458	-
Cu	HIS73	HIS118	HIS460	-
Cu	HIS73	HIS75	HIS405	HIS407
	Atom Cu Cu Cu Cu Cu	AtomAmino Acid 1CuHIS402CuHIS120CuHIS73CuHIS73	AtomAmino Acid 1Amino Acid 2CuHIS402CYS459CuHIS120HIS405CuHIS73HIS118CuHIS73HIS75	AtomAmino Acid 1Amino Acid 2Amino Acid 3CuHIS402CYS459HIS464CuHIS120HIS405HIS458CuHIS73HIS118HIS460CuHIS73HIS75HIS405

Validation of Laccase Model

Validation of the model was carried out using Ramachandran plot calculations computed

with the PROCHECK program. The phi/psi angles of 90.5% residues are found to be in favored regions, 9.1% residues are in the additional allowed

Structure	RMSD in A°				
	Model	1GYC_A	1KYA_A	1V10_A	
Model		0.568A°	0.582A°	0.698A°	
1GYC_A	$0.568 A^{\circ}$		0.402A°	0.696A°	
1KYA_A	0.582A°	0.402A°		0.744A°	
1V10_A	$0.698 \mathrm{A}^{\circ}$	0.696A°	$0.744 A^{\circ}$		

Table 3. The RMSD Values of superimposed structures

 Table 4. GOLD average fitness scores for predicted targets and few known substrates. * Marked compounds are known targets

Pubchem CID No.	Common Name or IUPAC Nomenclature of the Compounds	Gold Score
6386307	Thiodicarb	63.37
70424	1-Phenyl-2-trityl diazene	51.09
344999	2,5-bis[(benzyl amino) methyl] benzene-1,4-diol	48.73
91864	tris(2,4,6-trimethyl phenyl) phosphate	48.14
3627083	2-[[2-[(2-hydroxy-4-methyl phenyl)methylamino] ethyl amino] methyl]-5- methylphenol	48.09
8272	Bromo phenol blue*	47.24
10545677	2,6-bis(4-methoxy phenyl)-3,4,5-trimethyl phenol	46.51
11427473	4-(5,6,7-trimethyl-2-phenyl pyrazolo [1,5-a] pyrimidin-3-yl)phenol	45.19
5373218	3-methoxy-5-methyl-2-[(2E,6E)-3,7,11-trimethyl dodeca-2,6,10-trienyl] phenol	44.84
327968	Furanoterpene	43.97
79628	2-[4-(carboxy methyl)-2,5-dihydroxy phenyl] acetic acid	43.47
11826323	3,4,5-trimethyl-2,6-bis(2-phenyl phenyl) phenol	43.32
413487	2-(2H-1,3-benzoxazol-3-ylmethyl)-5-[(cyclo hexyl amino) methyl] benzene-1,4-diol	42.64
11792728	4-[4-(4-hydroxy-2,3,5-trimethyl phenoxy) butoxy]-2,3,6-trimethyl phenol	42.10
3791690	Bromo phenol blue sodium salt*	44.48
10853902	4-[2-(4-hydroxy-2,3,5-trimethyl phenoxy) ethoxy]-2,3,6-trimethyl phenol	41.82
8606	Captan	41.74
5809575	4-[(E)-2-(3,5-dimethoxy phenyl) ethenyl]-2-methoxyphenol	41.65
5375758	[3-methoxy-5-methyl-2-[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trienyl]phenyl] acetate	41.30
11833070	3,4,5-trimethyl-2-(2-phenyl phenyl) phenol	40.66
5468719	Rietone 1	40.10
9932727	2,4,5-trifluoro-6-nitro-3-[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trienoxy] phenol	39.77
96672	3,6-bis(morpholin-4-yl methyl) benzene-1,2-diol	39.25
5385086	5-[(E)-2-(3,5-dimethoxy phenyl) ethenyl]-2-methoxyphenol	37.96
10631638	(4-hydroxy-2,3,6-trimethyl phenyl) thiocyanate	37.90
5464076	ABTS*	37.27
361118	Trimethyl 3,3',3"-methane triyl tris(6-hydroxy-5-methylbenzoate)	37.60
67929	Trityl fluoride	36.91
10608543	4-chloro-2,3,5-trimethyl-6-prop-2-enylphenol	36.06
67215	leuco malachite green	35.86
10797865	4-benzhydryl-N,N-dimethyl aniline	35.75
10742	syringic acid*	35.10

BABU et al.: BIOREMEDIATION BY ENZYMES

1GYC 1KYA_A splQ12729 LAC1_PLEOS 1V10	AIGPAASLVVANAPVSPDOF-LRDAIVVNGVFPSPLITCKKODRFQLNVVD GIGPVADLTITNAVSPDOF-SRQAVVVNGVFPSPLITCKKODRFQLNVID AIGPTOBWIYUNEDVSPDOF-TRSAVVARSDPTTNGTSETLIGVUVQQNKODNPCLNVLN -ATVALDLHILNANLDPDGTGARSAVTAEGTTIAPLITGNIDDRFQINVID : * :.*** *.**: *: *: .*.****:	50 50 59 50
16VC 1KYA_A sp Q12729 LAC1_PLEOS 1V10	TLTNHTMLKSTSIHWHGFFQAGTNWADGPAFVNQCPIASGHSFLYDFHVPDQAGTFWYHS NLTNHTMLKSTSIHWHGFFQAGTNWADGPAFINQCPIASGHSFLYDFQVPPQAGTFWYHS QLSDTTMLKTSIHWHGFFQAGTTWADGPAFVNQCPIASGNSFLYDFNVPPQAGTFWYHS QLTDANMERATSIHWHGFFQAGTTENDGPAFVNQCPIIPNESFYDFVVPGQAGTFWYHS *:: .* ::*********	110 110 119 110
IGYC 1KYA_A sp Q12729 LAC1_PLEOS 1V10	HLSTQYCDGLRGPFVVYDPKDPHASRYDVDNESTVITLTDWYHTAARLGPRFPLGADATL HLSTQYCDGLRGPFVVYDPNDPAADLYDVDNDDTVITLVDWYHVAAKLGPAFPLGADATL HLSTQYCDGLRGPFVVYDPSDPHLSLYDVDNADTIITLEDWYHVAAKLGPAFDTDADSTL HLSTQYCDGLRGAFVVYDPNDPHLSLYDVDDASTVITIADWYHSLSTKAPPAPDTTL ***********	170 170 178 167
16YC 1KYA_A sp Q12729 LAC1_PLEOS 1V10	INGLGRSASTPTA-ALAVINVQHGKRYRFRLVSISCDPNYTFSIDGHNLTVIEVDGINSQ INGKGRSPSTTTA-DLSVISVTPGKRYRFRLVSLSCDPNYTFSIDGHNMTIIETDSINTA INGKGRFAGGPTS-ALAVINVESNKRYRFRLISMSCDPNFTFSIDGHSLQVIEADAVNIV INGLGRNSANPSAGQLAVVSVQSGKRYRFRIVSTSCFPNYAFSIDGHRMTVIEVDGVSHQ *** **: *:*:.*	229 229 237 227
16VC 1KYA_A sp Q12729 LAC1_PLEOS 1V10	PLLVDSIQIFAAQRYSFVLNANQTVGNYWIRANPNFGTVGFAGGINSAILRYQGAPVAEP PLVVDSIQIFAAQRYSFVLEANQAVDNYWIRANPNFGVGFTGGINSAILRYDGAAAVEP PIVVDSIQIFAGQRYSFVLEANQAVDNYWIRANPNGSTGFDGGINSAILRYDGAAVEP PLTVDSIQIFAGQRYSFVLMANQTVDNYWIRANPSNGRNGFTGGINSAILRYDGAAVAEP *: ***: ***:******	289 289 297 287
1GYC 1KYA_A sp Q12729 LAC1_PLEOS 1V10	TTTQTTSVIPLIETNLHPLARMPVPGSPTPGGVDKALNLAFNFNGTNFFINNASFTPP TTTQTTSTAPLNEVNLHPLVATAVPGSPVAGGVDLAINNAFNFNGTNFFINGASFTPP TTTSSTST-PLEETNLVPLENPGAPGAVPGGADINNLAMAFDVTNFELTINGSPFKAP TTSONSGT-ALNEANLIPLINPGAPGMPVPGGADINNLRIGRMATTAPTINGAPFIPP **:**.***	347 347 356 346
1GYC 1KYA_A sp Q12729 LAC1_PLEOS 1V10	TVPVLLQILSGAQTAQDLLPAGSVYPLPAHSTIEITLPATALAPGAPHPFHLHGHAFAVV TVPVLLQIISGAQNAQDLLPSGSVYSLPSNADIEISFPATAAAPGAPHPFHLHGHAFAVV TAPVLLQILSGATTAASLLPSGSIYSLEANKVVEISIPALAVGGPHPFHLHGHTFDVI TVPVLLQILSGVITNPLLPGGAVISLPANQVIEISIPGGGNHPFHLHGHNFDVV *.**********************************	407 407 414 401
1GYC 1KYA_A sp Q12729 LAC1_PLEOS 1V10	RSAGSTTYNYNDPIFRDVVSTGTPAAGDNVTIRFQTDNFGPWFLHCHIDFHLEAGFAIVF RSAGSTVINYDNPIFRDVVSTGTPAAGDNVTIRFRTDNFGPWFLHCHIDFHLEAGFAIVF RSAGSTYNFDTPARRDVVNTGTDAN-DNVTIRFVTDNFGPWFLHCHIDWHLEIGLAVVF RTPGSSVYNVNPVRFRDVVSIGGGGNVTFFFVTDNFGPWFLHCHIDWHLEGLAVVF *:.**: **: * ****. * ****. * ****	467 467 473 459
1GYC 1KYA_A spiQ12729 LAC1_PLEOS 1V10	AEDVADVKAANPVPKAWSDLCPIYDGLSEANQ 499 AEDIPDVASANPVPQAWSDLCPTYDARDPSDQ 499 AEDUYTSITAPPAAWDDLCPIYD 495 AEDIPNIPIANAISPAWDDLCPKYNANN 487 ***:	

Fig. 1. Multiple sequence alignment of Laccase from *P. ostreatus* with Laccase of Trametes *versicolor* (PDB ID 1GYC_A) *and Rigidoporus lignosus* (PDB ID 1KYA_A, 1V10_A) done using CLUSTALW server that was subsequently submitted to MODELLER. A hyphen (" - ") indicates a one-residue gap. The conserved regions are indicated by '*'

Fig. 2. The final 3D structure of the generated model along with the hetero atoms (Cu) of the enzyme *P. ostreatus* Laccase

regions 0.5% in the generously allowed regions. No Residues are in the disallowed conformations (Fig.3).

The RMSD (Root Mean Square deviation) deviation for covalent bonds relative to the

standard dictionary was - 0.32 Å and for the covalent angles was - 0.15 A°. The overall PROCHECK G-factor was - 0.20. The score indicates that the modeled structure is acceptable as value is greater than the acceptable value of -

Plot statistics

379

38

2 õ

419

2

39 35

----495

90.5%

9.1% 0.5%

0.0%

100.0%

Fig. 3. Ramachandran's map of Laccase enzyme built using MODELLER software. The plot calculations on the 3D model of Laccase enzyme were computed with the PROCHECK program

MODEL	SSSShSHSS-SHSS-SSSSSSSSSHSHssH-SSSSS-SSHShH-
1GYC_A	SSSShSHSShSHSS-SSSSSSSSHSHssH-SSSSShSSHShHh
1KYA_A	SSSS-SHSShSHSS-SSSSSSSSHSHssH-SSSSS-SSHS-H-
1V10_A	SSSS-SHSShSHSShSSSSSSSSHSHs-HhSSSSS-SSHShH-

Fig. 4. Secondary structure matching of final model (P. ostreatus Laccase) and templates

Fig. 5. The Active site of Postreatus Laccase enzyme from generated homology model

0.50. From the VERIFY_3D analysis, it was found that 82.65% of the residues scored more than 0.2, meaning that 93.75% of the residues complemented with the 1D-3D profile. Analysis of the entire structure calculated from PROVE program gave Z-score RMS of 1.509. Z-score above 4.0 and below - 4.0 represents the occurrence of many errors in the structure in terms of the packing of the buried atoms.

Superimposition and Secondary structure matching of Templates with Laccase Model

Superimposition of the model obtained with the templates and Secondary Structure matching were done by using with the protein structure comparison service (SSM). The structural superimposition of C^{α} trace of templates and Model is shown in Fig. 4 & 5. The weighted root mean square deviation of C^{α} trace between the

Fig. 7. A. 3D structure of the predicted target (through Hypothesis) 1-Phenyl-2-trityl diazene. B. Binding of 1-Phenyl-2-trityl diazene (predicted target) in the active site of Laccase enzyme. Active site residues are represented in Blue color and the predicted target (1-Phenyl-2-trityl diazene) is represented in white color.

Fig. 8. A. 3D structure of the substrate (Known) Bromophenol Blue. B. Binding of (substrate) Bromophenol Blue in the active site of Laccase enzyme. Active site residues are represented in Blue color and the substrate (Bromophenol Blue) is represented in white color

templates and final refined model were 0.568Å, 0.582 Å, 0.698Å (Table 3). The secondary structures of templates, final Laccase model are found to be highly conserved.

Active site identification of Laccase enzyme

After the final model was built, the possible binding sites of *P.ostreatus* Laccase enzyme were searched using the CASTp Web Server. The binding site obtained was compared with the active site of the template. It was found that residues in the active site , namely LEU171, ALA174, ASP214, PRO215, ASN216, PHE247, ALA248, ASN272, LEU273, GLY399, PRO401,

Pro403, ILE461 and HIS464 are conserved as shown in Fig.6.

It was observed that 214Asp and 464His within the defined ligand binding site cavity of *P.ostreatus* Laccase were conserved. These finding correlated with the structural data of 1KYA in which 206Asp and 458His contribute to the ligand binding site of laccase by the formation of hydrogen bonding with ligand 2, 5-xylidine (XYD)³¹. Hence in the present study 214 ASP and 464 HIS were chosen as the most favored site to dock the ligand site.

Table 5. Prediction of Toxicity Risk of the compounds used for Docking Studies

Pubchem CID No of	Molecular weight (g/mol) Activity Solubility the compound	Mutagenic Property effects	Tumourogeni c Property	Irritant	Reproductive	Aqueous (logs value)
6386307	354.00000	High Risk	High Risk	Absent	Medium Risk	-3.54
70424	348.43970	High Risk	High Risk	No Risk	No Risk	-5.28
344999	348.40000	No Risk	No Risk	No Risk	No Risk	-3.42
91864	452.52228	Medium Risk	Absent	High Risk	No Risk	-7.64
3627083	300.39536	High Risk	High Risk	Medium Risk	No Risk	-2.7
8272	669.96070	No Risk	No Risk	No Risk	No Risk	-5.42
10545677	348.43486	No Risk	No Risk	No Risk	No Risk	6.56
11427473	329.39506	No Risk	No Risk	No Risk	No Risk	6.09
5373218	342.51486	No Risk	No Risk	Medium Risk	No Risk	4.57
327968	340.45592	No Risk	No Risk	Medium Risk	No Risk	-4.44
11826323	440.57482	High Risk	Medium Risk	Medium Risk	Absent	-10.7
413487	354.44274	High Risk	High Risk	Medium Risk	Absent	4.53
11792728	358.47120	No Risk	No Risk	No Risk	No Risk	4.9
3791690	691.94253	High Risk	No Risk	No Risk	No Risk	-
10853902	330.41804	No Risk	No Risk	No Risk	No Risk	-4.36
8606	300.58932	High Risk	Tumourogenic	No Risk	R.effective	-4.8
5809575	286.32242	No Risk	No Risk	No Risk	High Risk	-3.51
5375758	384.55154	No Risk	No Risk	Medium Risk	No Risk	-4.85
11833070	288.38290	High Risk	Medium Risk	Medium Risk	No Risk	-6.52
5468719	416.50728	No Risk	No Risk	Medium Risk	No Risk	-3.27
9932727	413.43065	No Risk	No Risk	Medium Risk	No Risk	-5.43
96672	308.37280	No Risk	No Risk	No Risk	No Risk	-0.19
5385086	286.32242	No Risk	No Risk	No Risk	High Risk	-3.51
10631638	193.26544	No Risk	No Risk	Medium Risk	No Risk	-2.96
5464076	514.61872	No Risk	No Risk	No Risk	No Risk	-4.05
361118	508.51652	No Risk	No Risk	No Risk	No Risk	-4.08
67929	262.32080	No Risk	No Risk	No Risk	No Risk	-3.74
10608543	210.69990	No Risk	No Risk	No Risk	No Risk	-3.80
67215	330.46594	High Risk	High Risk	No Risk	No Risk	-3.93
0797865	313.34776	Medium Risk	No Risk	No Risk	No Risk	-3.96
10742	198.17270	Mutagenic	No Risk	No Risk	No Risk	-1.37

Docking Results with GOLD:

Docking studies were performed using GOLD 3.0 [Genetic Optimisation for Ligand Docking]. The differences in the best five docking solutions (RMSD < 1.5 A°) GOLD scores are given in Table 4. GOLD results indicate that the substrates and pollutants listed in Table 4 can be oxidized by Laccase which correlated with the experimental data^{33,34}.

Toxicity Studies

The predicted toxicity risks of the ligands used for docking studies are shown in Table 5. It shows the compound Properties with high risks of undesired effects like mutagenicity, tumorigenicity, irritant effects, and effects on reproduction. Most of the Ligands used for Docking studies have aqueous solubility and the logS Values are greater than -4, when these compounds are used in Research laboratories and industries, they will contaminate the fresh water when they are released in to the water bodies (lakes, ponds, and Rivers), which will affects plants and organisms living in these bodies of water. There will be a high risk for water-related diseases. This work can be considered for determining the putative targets for bioremediation using P.ostreatus laccase. After the discovery of oxidizing reaction pollutant range of laccases, their biotechnological importance showed a marked increase³⁵. Their importance could be further extended by the use of docking. Similar kind of work would be helpful to find putative pollutants for other biodegradative enzymes.

REFERENCES

- M. Dua, A. Singh, N. Sethunathan, A.K. Johri, Biotechnology and bioremediation: successes and limitations, *Appl. Microbiol. Biotechnol.* 2002; **59**: 143-152.
- K. Furukawa, 'Super bugs' for bioremediation, *Trends Biotechnol*. 2003; 21: 187–190.
- J.C. Spain, J.B. Hughes, H.J. Knackmuss, Biodegradation of Nitro aromatic Compounds and Explosives, Lewis Publishers, Boca aton, Florida 2000.
- 4. F. Xu, Oxidation of phenols, anilines and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition, *Biochemistry* 1996; **35:** 7608-7614.

- 5. K.K. Wong, J.D. Richardson, S.D. Mansfield, Enzymatic treatment of mechanical pulp fibers for improving papermaking properties, *Biotechnol. Prog.* 2000; **16**: 1025-1029.
- C. Novotny, P. Erbanova, T. Cajthaml, N. Rothschild, C. Dosoretz, V.Sasek, *Irpex lacteus*, a white rot fungus applicable to water and soil bioremediation, *Appl. Microbiol. Biotechnol.* 2000; 54: 850-853.
- R. Bourbonnais, M.G. Paice, Oxidation of nonphenolic substrates. An expanded role for Laccase in lignin biodegradation, *FEBS Lett.* 1990; 267: 99-102.
- A.M. Mayer, Polyphenol oxidases in plants recent progress, *Phytochemsitry* 1987; 26: 11-20.
- M.F. Hullo, I. Moszer, A. Danchin, I. Martin-Verstraete, CotA of Bacillus subtilis is a copperdependent laccase, *J. Bacteriol.* 183: 5426-5430.
- G. Amitai, R. Adani, G. Sod-Moriah, I. Rabinovitz, A. Vincze, H. Leader, B. Chefetz, L. Leibovitz-Persky, D. Friesem, Y. Hadar, Oxidative biodegradation of phosphorothiolates by fungal laccase, *FEBS Lett.* 1998; **438**: 195-200.
- S.V. Kumar, P.S. Phale, S. Durani, P.P. Wangikar, Combined sequence and structure analysis of the fungal laccase family, *Biotechnol. Bioeng*. 2003; 83: 386-394.
- 12. J. Drews, Drug discovery: a historical perspective, *Science*. 2000; **287**: 1960-1964.
- Bateman, A., E. Birney, L. Cerruti, R. Durbin, L. Etwiller, S. R. Eddy, S.Griffiths-Jones, K. L. Howe, M. Marshall, and E. L. Sonnhammer, The Pfam protein families database. *Nucleic Acids Res.* 2002; **30**: 276-280.
- 14. Apweiler, R., T. K. Attwood, A. Bairoch, A. Bateman, E. Birney, M. Biswas, P. Bucher, L. Cerutti, F. Corpet, M. D. Croning, R. Durbin, L. Falquet, W.Fleischmann, J. Gouzy, H. Hermjakob, N. Hulo, I. Jonassen, D. Kahn, A.Kanapin, Y. Karavidopoulou, R. Lopez, B. Marx, N. J. Mulder, T. M. Oinn, M. Pagni, F. Servant, C. J. Sigrist, and E. M. Zdobnov. The InterPro database, an integrated documentation resource for protein families, domains and functional sites. *Nucleic Acids Res.* 2001; 29; 37-40.
- Altschul, S. F., Gish, W., Miller, W., Myers, E.
 W. and Lipman, D. J. A basic local alignment search tool. *J. Mol. Biol.* 1990; 215: 403-410.
- Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE, The Protein Data Bank. *Nuc Acids Res* 2000; 28: 235-242.

- Per Larsson, Bjo Rn Wallner, Erik Lindahl, And Arne Elofsson, Using multiple templates to improve quality of homology models in automated homology modeling *Protein Sci.* 2008; 17(6): 990-1002.
- Thompson, J. D., Higgins, D. G. and Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res.* 1994; 22: 4673-4680.
- Sali, A. and Blundell, T. L.. Comparative protein modelling by satisfaction of spatial restraints. *J. Mol. Biol.*1993; 234: 779-815.
- Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., and Kollman, P. A., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. *J. Am. Chem. Soc.* 1995; **117**: 5179–5197
- R. A. Laskowski, M. W. MacArthur, D. S. Moss and J. M. Thornton, *PROCHECK:* a program to check the stereochemical quality of protein structures *J. Appl. Cryst.* 1993; 26: 283-291.
- 22. Luthy R, Bowie JU, Eisenberg D, Assessment of Protein Models With three-dimensional profiles. *Nature* 356 (1992) 83-85.
- Pontius J, Richelle J, Wodak SJ, Deviations from standard atomic volumes as a quality measure for protein crystal structures. *J Mol Biol* 1996; 264: 121-136.
- 24. Joe Dundas, Zheng Ouyang, Jeffery Tseng, Andrew Binkowski, Yaron Turpaz, and Jie Liang. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated resiudes. *Nucleic Acid Research*, 2006; 34: W116-W118.
- G. Jones, P. Willett, R.C. Glen, A.R. Leach, R. Taylor, Development and validation of a genetic algorithm for flexible docking, *J. Mol. Biol.* 1997; 267: 727–748.
- Actelion Pharmaceuticals Ltd, "OSIRIS Property Explorer.", http://www.organicchemistry.org/prog/peo/, (2008)
- Klaus Piontek[‡], Matteo Antorini, and Thomas Choinowski, "Crystal Structure of a Laccase from the Fungus *Trametes versicolor* at 1.90-Å

Resolution Containing a Full Complement of Coppers" *J.Biol.Chem.* 2002; **277:** 37663.

- Bertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C, Mougin C, "Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics Biochemistry". 2002; 41(23): 7325-33.
- 29. Garavaglia S, Cambria MT, Miglio M, Ragusa S, Iacobazzi V, Palmieri F, D'Ambrosio C, Scaloni A, Rizzi M, The structure of Rigidoporus lignosus Laccase containing a full complement of copper ions, reveals an asymmetrical arrangement for the T3 copper pair" *J Mol Biol.* 2004; **342**(5): 1519-31.
- E. Krissinel, K. Henrick, Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. *Acta Crystallogr. D Biol.Crystallogr.* 2004; 60: 2256– 2268.
- Saharuddin Bin Mohamad1, Ai Ling Ong2 and Adiratna Mat Ripen, Evolutionary trace analysis at the ligand. *Bioinformation*. 2008; 2(9): 369-372
- Andrzej Majcherczyk^{A, *}, Christian Johannes^A and Aloys Hüttermann^A, "Oxidation of Polycyclic Aromatic Hydrocarbons (PAH) by Laccase of *Trametes Versicolor*", *Enzyme and Microbial Technology*, 1998; 22(5): 335-341.
- D. Faure, M. Bouillant, R. Bally, Comparative Study of substrates and inhibitors of Azospirillum lipoferum and Pyricularia oryzae Laccases, Appl. Environ. Microbiol. 1995; 61: 1144–1146.
- Yan, Keliang, Hongxun Wang, Xiaoyu Zhang, and Hongbo Yu, "Bioprocess of Triphenylmethane Dyes Decolorization by Pleurotus ostreatus BP Under Solid-State Cultivation "J. Microbiol. Biotechnol. 2009; 19(11): 1421–1430
- Rodriguez, S. Couto, Toca, J.L. Herrera, Industrial and biotechnological applications of laccases: *A review, Biotechnol. Adv.* 2006; 24: 500–513.
- Panneer Selvam Suresh, Anil Kumar, Rita Kumar, Ved Pal Singh, An Insilco approach to bioremediation: Laccase as a case study, *J Mol Graph Model*, 2007; 26(5): 845-9.

60