Evaluation of Five Different Phenotypic Methods for Detection of Methicillin Resistance in Coagulase–Negative Staphylococci (CoNS) Isolated from Clinical Specimens

Mohammad Rahbar¹², Mona Mohammad-Zadeh³, Hossein Masoumi Asl⁴, Leila Azimi¹ and Abdolaziz Rastegar Lari*¹

¹Antimicrobial Resistance Research Center, Tehran University of Medical Sciences, Tehran, Iran.
²Department of Microbiology, Iranian Reference Health Laboratory, Ministry of Health and Medical Education, Tehran, Iran.
³Department of Microbiology, Milad Hospital, Tehran, Iran.
⁴Center for Communicable Disease Control, Ministry of Health and Medical Education, Tehran, Iran.

(Received: 18 February 2011; accepted: 21 April 2011)

Objective Rapid and accurate detection of methicillin resistant coagulase -negative staphylococci (MRCoNS) is an important role of clinical microbiology laboratories to avoid treatment failure. The aim of this study was to compare conventional phenotypic methods for detection of methicillin resistance in CoNS isolates. Methicillin resistance was studied among clinical isolates of CoNS in Milad hospital of Tehran. Five different phenotypic methods including E-test MIC, oxacillin screening agar, oxacillin disk diffusion, cefoxitin disk diffusion and CHROMagar MRSA methods were used for detection of methicillin resistant CoNS. During our study, between January and December 2010 in total 114 CoNS strains were isolated from clinical specimens. The majority isolates were from blood culture. Oxacillin and cefoxitin both showed 98 methicillin resistant CoNS. The sensitivity and specificity for these two methods was 95.37% and 100% respectively. The sensitivity and specificity of oxacillin screening agar was similar to those disk diffusion methods. CHROMagar MRSA had low sensitivity in comparison to other methods. All isolates including methicillin resistant CoNS were susceptible to vancomycin. Nearly 96% isolates were resistant to penicillin. Rate of resistance to oxacillin was 90.35% using E-test MIC method. Our study revealed that all phenotypic methods have high sensitivity and specificity for detection of methicillin resistant CoNS. However the cefoxitin disk test is easy to perform and rapidly becoming the preferred method for detection of oxacillin heteroresistance in CoNS.

Keywords: Methicillin Resistant, Coagulase-Negative Staphylococci.
bacteremia cases are caused by CoNS. Resistance to methicillin among isolates of CoNS is very important due to cross-resistance to virtually all β-lactam drugs and other antibiotics as a result therapeutic protocol are restricted to vancomycin and new agents such as linzolid4. There is two essential ways responsible for the resistance of staphylococci to β-lactam antibiotics. The first mechanism includes production of β-lactamase that destroys antibiotics. The second mechanism is alteration of proteins located in cell wall of bacteria. This proteins are called penicillin binding proteins (PBPs). Most resistance to oxacillin by staphylococci is mediated by the meca gene, which codes for production of additional penicillin binding protein named PBP2a. These proteins expressed either homogeneously or heterogeneously. Homogenous resistance is easily detected with standard testing methods, whereas heterogeneous is more difficult to detect with some methods, because a fraction of the population of cells express the resistance phenotypic5.

There are many different laboratory methods including phenotypic and genotypic methods for detection methicillin resistance in CoNS2,5-12. Therefore correct detection of methicillin resistance in CoNS may allow selecting the better antimicrobial therapy and avoiding the selection of vancomycin and other expensive antibiotics.

Studies evaluating the accuracy of methods emphasizing on the phenotypic detection of methicillin resistance in CoNS in Islamic republic of Iran are scarce and limited to oxacillin disk diffusion method. In present study we aimed to evaluate methicillin resistance in CoNS isolated from clinical specimen using various phenotypically susceptibility testing methods, including disk diffusion method using both oxacillin and cefoxitin disks, oxacillin screen agar, MIC-E test and chromoagar MRSA methods2,5-11.

MATERIAL AND METHODS

Clinical isolates of CoNS from different specimens including blood cultures, and other specimens between January and December 2010 in Milad hospital of Tehran were subject of our study. Milad hospital is a 1000-bed non-teaching tertiary care hospital. In total, one hundred and fourteen strains of CoNS were isolated from specimens of patients admitted to our hospital. Out of 114 CoNS 107(93.8%) strains were isolated from blood cultures. All of patients was hospitalized patients. Briefly, the specimens were cultured aerobically in blood and MacConkey agar. The plates were incubated overnight at 35°C. All isolates were identified using gram stain, biochemical tests including catalase, coagulase and DNase and other conventional biochemical tests9-10.

Susceptibility testing of all isolates was performed with oxacillin (1µg) and cefoxitin (30 µg) disks, using Mueller Hinton agar with a suspension equivalent to 0.5 McFarland standards of the CoNS isolates. All plates were incubated at 35 °C for 24h. Zone of inhibition were measured in millimeter and interpreted as guideline recommended by CLSI. For MHA oxacillin disk diffuse on ≤17mm zone of inhibition size was accepted resistant and zone ≥18mm considered as susceptible. This figures for resistance and susceptibility to cefoxitin was ≤24mm and ≥25mm respectively. There was not any intermediate in this category.

The E-test method (AB Biodisk Solna Sweden) was used to determine MIC as recommended by manufacture. Briefly using Muller Hinton agar supplemented with 2% NaCl and an inoculums density equivalent to 0.5 McFarland standards. A sterile swab was dipped into an inoculums suspension. The entire surface of Mueller–Hinton agar was swabbed by rotating the plate to ensure an even distribution of the inoculum. An E-test strip with sterile pans was placed aseptically onto the MHA plate. Plates were incubated at 35C for 24h. The MIC was read at the point of intersection between the zone edge and the E-test. Isolation with MIC value >0.5mg/L were accepted MRCoNS12. We used also oxacillin screening agar which was performed by inoculating a direct colony suspension (0.5 McFarland standard) with a swab spotting an area 10 to 15mm in diameter. Oxacillin screening agar was performed on Mueller–Hinton agar supplemented with 4% NaCl and 6µg/ml oxacillin as recommended by CLSI. After incubation at 35°C for 24 hours. Any growth was interpreted as positive for methicillin resistance12. For detection of CoNS on CHROMagar MRSA a suspension of 0.5 MacFarland was prepared and 10µL of bacterial suspension was streaked on above mentioned
medium as recommended by manufacture. All plates were incubated at 35°C for 24h. Strains growing on CHROMagar MRSA and yielding colonies with rose to mauve color were considered methicillin resistant CoNS as recommended by manufacture13.

S.aureus ATCC25923, ATCC25922 and *Pseudomona aerugiosa* ATCC 27853 were used as a control strains for quality control of susceptibility testing antibiotics disks. *S.aureus* ATCC 29213 was used as a control strains for detection of methicillin resistance12.

RESULTS

During our study in total 408 staphylococcus spp were isolated from clinical specimens. Of 408 Staphylococcal isolates 114(28%) isolates were CoNS. *S. warnery* with 74 isolates were the predominant isolates. Of 114 isolates 107(93.8%) strains were isolated from blood cultures, patient age ranged between nine month to 88 years old and the majority of patents were children. We observed a high rate of resistance among CoNS isolates. Of 114 isolates 103 (90.35%) were resistant to methicillin by E-test MIC method. By using oxacillin and cefoxitin disk diffusion method 98(86%) were resistant to methicillin. Results of oxacillin screening agar was the same as disk diffusion methods. Chromoagar showed just 87 MRCoNS. The sensitivity and specificity all methods were used for detection coagulase-negative methicillin resistant staphylococci are shown in Table 1.

Results of methciliin resistance among CONs isolate using different phenotypic methods are shown in Table 2.

Table 1. Sensitivity and specificity of phenotypic methods for detecton Methicillin resistance in CoNS

<table>
<thead>
<tr>
<th>Method</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-Test MIC</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Oxacillin disk</td>
<td>95.37</td>
<td>100</td>
<td>100</td>
<td>68.75</td>
</tr>
<tr>
<td>Cefoxitin disk</td>
<td>95.37</td>
<td>100</td>
<td>100</td>
<td>68.75</td>
</tr>
<tr>
<td>Oxacillin screening agar</td>
<td>95.37</td>
<td>100</td>
<td>100</td>
<td>68.75</td>
</tr>
<tr>
<td>Chromoagar</td>
<td>100</td>
<td>86.55</td>
<td>100</td>
<td>40.74</td>
</tr>
</tbody>
</table>

MIC=Minimum Inhibitory Concentration ,PPV=Positive Predictive Value ,NPV=Negative Predictive Value

Table 2. Result of susceptibility testing of CoNS for different antibiotics

<table>
<thead>
<tr>
<th>Co-trimoxazole</th>
<th>Ampicillin</th>
<th>Ceftrixone</th>
<th>Clindamycin</th>
<th>Erythromycin</th>
<th>Penicillin</th>
<th>Antibiotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>66%</td>
<td>67%</td>
<td>81%</td>
<td>84%</td>
<td>83%</td>
<td>97%</td>
<td>Resistance</td>
</tr>
</tbody>
</table>

Table 3. Results of methciliin resistance among CONs isolate using different phenotypic methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Susceptible</th>
<th>Intermediate</th>
<th>Resistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-Test MIC</td>
<td>11</td>
<td>0</td>
<td>103</td>
</tr>
<tr>
<td>Oxacillin disk</td>
<td>16</td>
<td>0</td>
<td>98</td>
</tr>
<tr>
<td>Cefoxitin disk</td>
<td>16</td>
<td>0</td>
<td>98</td>
</tr>
<tr>
<td>Oxacillin screening agar</td>
<td>16</td>
<td>0</td>
<td>98</td>
</tr>
<tr>
<td>Chromoagar</td>
<td>27</td>
<td>0</td>
<td>87</td>
</tr>
</tbody>
</table>

All isolates were susceptible to vancomycin. However, two strains showed reduced susceptibility to vancomycin by E-test MIC method. Resistance to other antibiotics was also prevalent. Resistance to penicillin, erythromycin, clindamycin, ceftriaxone, ampicillin and co-trimoxazole were 97%, 82.5%, 84%, 82.5% and 66.66% respectively. Rifampin and choleramphenicol were the most effective antibiotics against methicillin resistant CoNS in comparison to other routinely used antibiotics. The result of susceptibility testing of CoNS are shown in table-3.

DISCUSSION

Staphylococci are the most commonly pathogens isolated from clinical specimens especially blood culture bottles14.17. Antibiotic susceptibility pattern of CoNS is unpredictable and for this reason, the recommendation now is to perform antimicrobial susceptibility testing to all isolates. Detection of Methicillin resistance in CoNS is the subject of many studies. Methicillin resistance in staphylococci is coded protein (PBPPBP2(5). Currently there are some problems for detection of MRCoNS because of the heterogeneous resistance displayed by many clinical isolates. In recent years several studies have showed that molecular methods such as PCR are gold standard method for detection of MRCoNS. However, most laboratories in our country are not in position to perform molecular methods. In additional molecular methods are not cost benefit in many laboratories especially in developing countries19-20.

In the present study, we evaluated different phenotypic methods for detection of methicillin resistance in CoNS. In our study oxacillin and cefoxitin disk diffusion methods had 95.37% sensitivity and 100% specificity for detection MRCoNS. Although disk diffusion methods have a high sensitivity and specificity for MRSA but it could not show the same results for CoNS. Like other investigators we found high sensitivity and specificity for routine phenotypic methods for detection of MRCoNS. In our study we found that disk diffusion methods both with oxacillin and cefoxitin have a comparable results with OSA for detection of MRCoNS. Many studies have been showed that cefoxitin disk test is the preferred method for the detection of oxacillin heteroresistance with high sensitivity and specificity. In our study the sensitivity of cefoxitin disk diffusion method was lower than other studies. The false –negative results in our study may be due to an extremely heterogeneous expression of resistance.

In our study sensitivity and specificity of oxacillin screening agar was the same as disk diffusion methods. Even though some recent studies have showed that oxacillin screening agar test is not efficient towards CoNS but some studies have pointed that oxacillin screening agar is more sensitive for detection of MRCoNS. In study carried out by Adalia et al they showed a good performance of all of the tests used. Comparatives studies also by other researchers to assess the OSA and disk diffusion method have showmen that OSA has good sensitivity and specificity for detection of MRCoNS.

At present study we used CHROMagar MRSA as a recently introduced method for detection methicillin resistance. Our study revealed a 100% sensitivity and 86.55 specificity for this method which is not comparable with other studies. One reason may be due that CHROMagar MRSA is designed for detection of MRSA and its application for MRCoNS has not standardized by manufacture.

The E-test has the advantage of being easy to perform as disk diffusion test and approaches the accuracy of PCR for mecA. There are several reports comparing E-test with dilution and PCR method with generally good results, depending on the particular combination and incubation condition used. In our laboratory PCR method is not available and for this reason we selected E-test method as a gold standard method and results of other phenotypic methods were compared with this method.

Because of increasing importance clinically significant CoNS should be identified to the species level and antimicrobial susceptibility testing especially against methicillin should be performed routinely for all isolates.

Methicillin resistant CoNS are traditionally resistant to a variety of antimicrobial agents including tobramycin, clindamycin, trimethoprim-sufamethoxazole, tetracycline and erythromycin. In our study resistance rate of
CoNst to ceftriaxone, ampicillin and co-trimoxazole was respectively. It has also been reported that in vitro susceptibility of CoNS to fluoroquinolones drugs is higher for the MRCoNS than for the methicillin susceptible CoNS. In our study 60 (52.63) isolates of CoNS were resistant to ciprofloxacin.

CONCLUSION

Our results showed that E-test MIC is a reliable phenotypic method for detection of MRCoNS. Other methods including oxacillin, cefoxitin disk diffusion methods as well as OSA have a high Sensitivity. These methods can be easily performed in routine microbiology laboratories. However, the cefoxitin disk test is rapidly becoming the preferred method for detection of oxacillin heteroresistance.

ACKNOWLEDGEMENTS

This study was funded by Tehran University of Medical Sciences (Grant number M-503).

REFERENCES

16. Ferreira RB, Iorio NL, Malvar KL, Nunes AP, Fonseca LS, Bastos CC, Santos KR. Coagulase-negative staphylococci: comparison of
phenotypic and genotypic oxacillin susceptibility tests and evaluation of the agar screening test by using different concentrations of oxacillin. J Clin Microbiol. 2003; 41: 3609-14

