South Gujarat is heavy rainfall zone and is having sufficient irrigation facilities. These facilitate for extensive cultivation of various crops viz., fruit crops, cash crops, oilseeds, pulses, vegetables and ornamental crops. The disease is the major constraint in economical production as it inflicts heavy crop losses. The drawbacks of chemicals are well known in scientific and farming community. Hence, the farmers have started for eco-friendly plant disease management (EPDM) or biological based Integrated Disease Management (BIDM). Trichoderma proved worldwide accepted technology for the biological control of plant diseases particularly for seed borne and soil borne diseases (Pandya et al., 2011). Hitherto, no work on native strains of Trichoderma has been done from this area. As a result this is the first attempt on the collection and isolation on native strains of Trichoderma spp.

MATERIALS AND METHODS

Isolation of Trichoderma spp. and their enumeration

The isolation was made from soil samples collected from different fields of chickpea, sugarcane and castor. Trichoderma spp. were isolated by the employing serial dilution method as mentioned by Ramanujam and Sriram (2009). One sample was collected from castor rhizoplane subjected to tissue isolation. This field was heavily infected with wilt (Fusarium sp.). All the isolates were purified by tissue isolation technique and maintained for further studies.

Materials required

<table>
<thead>
<tr>
<th>Material</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sterilized water</td>
<td>100 ml in conical flasks (250ml)</td>
</tr>
<tr>
<td>Sterilized water</td>
<td>9 ml in test tubes</td>
</tr>
<tr>
<td>Sterilized pipettes</td>
<td>1ml</td>
</tr>
</tbody>
</table>

* To whom all correspondence should be addressed.
Tel.: +91-2632227211; Mob.:+91-8238230428;
E-mail: jaaminrpandya44@yahoo.co.in
Sterilized petridishes
Rose Bengal Agar medium (RBA)
Magnesium sulphate : 0.2g
K$_2$HPO$_4$: 0.9g
Ammonium nitrate : 1.0g
Potassium chloride : 0.15g
Glucose : 3.00g
Agar : 15.00g
Rose Bengal : 0.15
Chloromphenicol : 0.25g
Distilled water : 1 lit.

Methodology and observations
For serial dilution method,

- Take 10 g of soil sample and suspend in 90 ml sterilized distilled water (1:10 or 10^1).
- Shake the tubes thoroughly.
- Take 1 ml suspension and transfer to 9 ml sterile water in test tube (1:100 or 10^2).
- Make serial dilutions by transferring 1 ml of the suspension to the subsequent tubes to get 10^4.
- Transfer one ml of the desired soil suspension to Petri plates containing RBA in triplicate.
- Rotate the plates gently.
- Incubate at room temperature (27±2°C).

Table 1. Trichoderma isolates counts from different rhizospheric soils.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Soil samples</th>
<th>No. of Trichoderma colonies (104 dilution)</th>
<th>Other Trichoderma colonies</th>
<th>c.f.u./g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chickpea/PRS*, Navsari</td>
<td>14</td>
<td>7</td>
<td>66.66</td>
</tr>
<tr>
<td>2</td>
<td>Chickpea/ Farmer’s field Waghai</td>
<td>16</td>
<td>8</td>
<td>66.66</td>
</tr>
<tr>
<td>3</td>
<td>Sugarcane/ Farmer’s field Bardoli</td>
<td>18</td>
<td>7</td>
<td>75.00</td>
</tr>
<tr>
<td>4</td>
<td>Sugarcane/ Farmer’s field Sayan</td>
<td>20</td>
<td>7</td>
<td>74.07</td>
</tr>
<tr>
<td>5</td>
<td>Castor/RRRS**, Vyara</td>
<td>14</td>
<td>7</td>
<td>66.66</td>
</tr>
</tbody>
</table>

*PRS: Pulse Research Station; **RRRS: Regional Rice Research Station

Fig. 1. Natural occurrence of *Trichoderma* on castor rhizospheric.

Fig. 2. Isolation of *Trichoderma* on Rose Bengal (RBA) medium.
For tissue isolation,
- Collect the samples of castor roots along with visually observed Trichoderma colonization. That colonized area was subjected to tissue isolation.
- The colonized area was cut into small bits. The bits were surface sterilized with mercuric chloride (HgCl\textsubscript{2}) solution @ 0.1 per cent for 30 seconds followed by three washing with sterilized distilled water and then transferred aseptically, under laminar air flow system (Cabinet manufactured by Klenzoid contamination control Ltd.), on sterilized Petriplates containing 20 ml Rose Bengal Agar (RBA) medium.
- These petriplates were incubated at room temperature (27±2\degree C).
- The fungal hyphae developing from the bits were first examined microscopically and then sub-cultured aseptically on RBA slants for the purification of culture.

Observations
- Count the number of colonies of Trichoderma spp. and other microorganisms developing in individual plates.
- The percentage of Trichoderma colonies were calculated as suggested by Siddiquee et al. (2009):
 \[
 \text{% of Trichoderma cfu} = \frac{\text{No. of Trichoderma colonies per plate}}{\text{Total no. of colonies per plate}}
 \]
- Number of cfu per gram of soil were recorded by following formulae suggested by Bhat et al. (2009): cfu/g of soil sample = Average colonies x Dilution factor

RESULTS

The isolation from soils at 104 dilution resulted into 14 to 20 colonies of Trichoderma and 7-8 colonies of other fungi. Maximum colonies of Trichoderma were recorded from soil sample collected from the farmer’s field of sugarcane at Sayan20. This was followed by farmer’s field of chickpea at Waghai16, chickpea field at Navsari and castor field at Vyara14. The percentage of Trichoderma colony forming unit was ranging from 66.66 to 75.00. The number of colony forming unit of Trichoderma in 1 g of soil was ranging from 1.4 x 105 to 2.0 x 105 c.f.u./g (Table 1). One isolate of Trichoderma was also isolated from the rhizoplane of castor. Natural occurrence of Trichoderma was observed profusely in castor crop at Navsari which was heavily infected by wilt (Fig 1). Trichoderma colonies were initially observed as white speck on agar which then enlarged within six days. By this time, the white colony turned yellowish to green on Rose Bengal Agar medium. Trichoderma colonies grew rapidly and developed their typical green colour, which aided in their identification from other soil-borne fungi (Fig 2). The isolates of Trichoderma spp. obtained from the different rhizospheric soils and rhizoplane (castor) were purified. The pure culture was sent to Indian Type Culture Collection (I.T.C.C.), Division of Mycology and Plant Pathology, I.A.R.I., New Delhi – 110 012 and was identified as Trichoderma fasciculatum (ID No. 6929.08 & 6930.08), Trichoderma viride Pers. (ID No. 7120.08 & 7122.08), Trichoderma harzianum Rifai (ID No. 7121.08) and Trichoderma atroviride Bissett (ID No. 7123.08). Isolates were coded as TFC-1, TFC-2 (Castor); TVS-1, TVS-2 (Sugarcane); THCh-1 and TACh-1 (Chickpea). All the isolates were first time reported from the south Gujarat region. Among them, T. fasciculatum and T. atroviride were recorded for the first time from Gujarat.

DISCUSSION

Results revealed that there is ample amount of Trichoderma population present in the soils tested. Also the quantification of Trichoderma cfu/g are in line with earlier workers (Papvizas and Lumsden, 1982 and Rahman et al., 2009). The intensification of this should be done so as to eradicate soil borne plant pathogens biologically and to maintain soil health. Such extensive survey to create database and making a map showing the status of useful microorganisms in the area is suggested. This information can also be incorporated in “Soil Health Card” prepared by the Government of Gujarat.

ACKNOWLEDGEMENTS

The author heartily thanks to Dr. A.N. Sabalpara, Director of Research & Dean PG studies for proper guide as a major advisor and to the
laboratory of Department of Plant Pathology for given research based necessary facilities.

REFERENCES

