
Escherichia coli is a Gram negative non-
spore forming facultative organism that is abundant
in the gastrointestinal tract of humans and warm
blooded animals1. The intestinal micro-biota
consists of over 500 species of bacteria but E. coli
is the predominant facultative anaerobe at this
highly competitive site2. It has been suggested that
its ability to utilize gluconate more effectively than

other intestinal microorganisms has contributed
to its immense success at existing in this unique
environment2-4.  This extremely versatile
microorganism is probably the most studied
organism in microbiology and it has become the
model organism for many aspects of
microbiological research2,5 including but not limited
to research in biochemistry,  genetics and also the
production of recombinant proteins1. E. coli can
also be found in soil and water as a result of faecal
contamination and this has led to its use as an
indicator organism for poor water and/or food
quality6.

This ubiquitous bacteria colonizes the
human infant gut within hours of birth to the first
week of life after being acquired from the mother
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and other adult care givers2,7 and it can live as a
commensal in the human gut rarely causing
disease, unless the host becomes
immunocompromised or gastrointestinal barriers
are breached2. E. coli is however far from being
just a harmless intestinal organism or opportunistic
pathogen; it can also be a highly virulent and fatal
pathogen6. In the course of the evolution of this
bacterium, it has acquired specific virulence factors
which enable it to adapt to new environments or
habitats and cause a variety of diseases. In this
regard, different pathotypes of E.coli have been
identified, over the past 50 years, based on the
combination of virulence factors that they carry
and these are responsible for the various types of
infections attributable to the bacterium. Generally,
the bacterium is responsible for intestinal or
diarrhoeal diseases and extra-intestinal diseases
of which urinary tract infections and meningitis in
neonates are the most important8,9.  These
pathotypes and the newly emerging ones have
been implicated in intermittent diarrhoeal epidemics
that resulted in high morbidity and mortality around
the globe9-11.

In spite of the notable virulence of E. coli
and its public health implications, its role as
veritable tool in various spheres of life should not
be by-passed. Hence, this article reviews the
beneficial role of E. coli and emphasizes with its
role as a ubiquitous pathogen with a call to
alertness in view of the present realities.
E. coli as a beneficial bug: Usefulness in
Biotechnology and Biomedicine

E. coli is of immense importance in
modern biotechnology and industrial
microbiology12, 13. This can be adduced to the ease
of subjecting it to conventional laboratory analysis
and genetic manipulation14; largely due to such
qualities like safety in handling (when compared
to the like of Mycobacterium spp.), simplicity, well
known genetic properties, as well as its ability to
pick up foreign DNA following already established
techniques15 that are characteristic of the bacteria.
Thus, E. coli is undoubtedly the original bacterium
used for recombinant DNA and biotechnology16.
It serves as a veritable tool in the production of
extracellular recombinant proteins, which command
preference to intracellular production that does not
require disruptions of cell during protein
recovery17.

The slow cycle time of yielding biodiesel
from plants compared to the increasing demand
for the commodity18 necessitates the use of
microbes19, of which E. coli is an example. This is
because microbes, in general, have short life cycles
and higher turn-over rates20.  Genetically
manipulated E. coli has been employed in biodiesel
production especially as it does not produce
unwanted glycerol, unlike the engineered oil seed
from plants. Lu et al.,15 manipulated the genome of
a fatty acid producing E. coli and observed the
desired overproduction of 50% pure fatty acid
easily convertible to biodiesel.

Many life-sustaining proteins and
enzymes take their origin from E. coli16. An example
is insulin which is a vital hormone-substitute for
patients with diabetes mellitus21. To achieve insulin
production, insulin gene is usually cloned into a
suitable vector (E. coli bacterium cell), to produce
the type that is chemically identical to the
humans’22. This production of hormones is as good
as the production of enzymes by the same
organism. The enzymes produced by E. coli are
utilized in the industrial production of other
polymers, for example, by fermentation13, 22. Using
its hydrolase enzymes through tricarbocylic acid
cycle and Embden-Meyerhof pathway for example,
E. coli has been applied in industries to convert
glucose to hydroxy-L-proline23. Deng et al.,24 were
able to produce > 110 g l-1of N-acetyl glucosamine
by low-cost fermentation involving E. coli. Also,
due to the degradative potentials and high
productivity quotient, the bioengineered E. coli
has been used extensively to remediate the polluted
environments and synthesis of vital
macromolecules respectively16, 21.

One E. coli strain, Escherichia coli
Nissle17,19, belonging to the same classification
scheme as others, is placed in O and H serogroups
and confers non specific immunity as well as
diverse therapy25-27 on its host. This Escherichia
coli Nissle exhibits microbial antagonism against
Salmonella and Candida albicans thereby
protecting the host against infection28, 29. It is
therefore being applied as a probiotic in
prophylactics and in therapeutic control of
infection, diagnosis and treatment of malignancy30

as well as bowel diseases26. This, owing to the fact
that the probiotic strain has the ability to deliver
therapeutic molecules which address basic human
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body disorder in vivo31. This beneficial application
was demonstrated earlier with in vitro study cell-
in-line cultures where the E. coli prevents the
invasion by Yersinia enterocolitica, Listeria
monocytogenes, Listeria pneumophila, Shigella
flexneri, Salmonella and virulent E. coli32, 33.  An
elevated therapeutic success rate of 86.7% cases
of intestinal and extra-intestinal disorders was
observed in some records, while symptom
improvement was observed by 84.4% professional
and 81.2% by non professional34.
Escherichia coli as an Indicator Organism

The coliforms and in particular E. coli are
used as indicator bacteria35, 36. The detection of
E. coli in a water source may be indicative of faecal
contamination and high potentials of having other
pathogens in the wate37, 38. The diversities of
associating pathogens in a river, along with E. coli
are determined by an interplay of factors, which
may include the proximity to domestic waste and
industrial effluents, the composition of the wastes
being disposed into the river body, intrinsic
ecology of the river and climatic factors39. These
factors play a vital role in the choice of the source
of water for domestic use by humans and for
agricultural purposes.
Non pathogenic and pathogenic E. coli strains

Pathogenic E. coli strains have been
implicated as aetiologies of various forms of
diarrhoea, utilizing virulence factors and genes that
are absent in non-pathogenic strains40. These
pathogenic strains are classified into pathotypes
based on their mode of infectivity, clinical signs
observed during infection and their virulence
genes41. The widely acceptable pathotypes
(predominantly implicated in intestinal diseases)
include Verocytotoxigenic/Enterohemorrhagic E.
coli (VTEC/EHEC), Enterotoxigenic E. coli (ETEC),
Enteroinvasive E. coli (EIEC), Enteropathogenic
E. coli (EPEC), Enteroaggregative E. coli
(EAggEC), Diffusely adherent E. coli (DAEC)42.
The extra intestinal pathotypes are: meningitis
associated E. coli (MNEC) and uropathogenic
E. coli (UPEC)2,43. There are several other
pathotypes that have been identified but the
mechanisms of pathogenicity of these are not well
known yet44. EPEC, EHEC and ETEC have also all
been implicated in diseases in animals and these
strains make use of the same virulence factors as
in humans including specific colonisation factors

not found in human strains2. The ETEC and
EAggEC do not exhibit any form of overlap with
other pathotypes, unlike EHEC and and O157
strains which are a subset of VTEC known to be
human pathogens. ETEC produces enterotoxins,
and is responsible for persistent travellers’
diarrhoea 44. These toxins determine the virulence
of ETEC by its effects against enterocytes’
functions45-47. VTEC produces verocytotoxin (VT)
which are similar to Shiga toxin (Stx) produced by
Shigella dysenteriae and this informed the
alternate reference of the E. coli as Shiga toxin
producing E. coli (STEC). The VT produced by
ETEC as well as its subtypes (O175 and EHEC)
interferes with cell protein and determine the
strain’s pathogenicity. The toxins (which are
classified into VT1, VT2, and VT2 subtypes) and
eae gene cause lesion of the intestinal microvillus
and the adherence of the E. coli to erythrocyte
membrane48.
Epidemiology of the E. coli Pathotypes and New
Toxic Strains in Perspectives

The VTEC with its subtypes EHEC and
O157 are of great importance to human health42, 49.
They originate from reservoirs like fresh juice, fruit
salad, cheese, lettuce, etc which are mostly
uncooked and are served as delicacies mostly in
the West49. The spread may also be due to
swimming in contaminated pools or drinking water
harbouring the bacteria. O157 can also be contacted
through contact with infected individuals or animal
faeces during recreation. O157:H7 has been
implicated in the hemolytic-uremic syndrome (HUS)
epidemic in United States, Europe and Japan
(provide ref). While it is generally known that over
a hundred and fifty serotypes cause human
disease50, in Argentina and Australia however, it is
the non-O157 VTEC/STEC51, 52 that are increasingly
noted for infection53. As large as 73,000 per annum
of clinical cases involving serotype O157:H7 were
observed in USA54. The serotype is not only
responsible for HUS but also for HC55, 56, which
affects the individuals below the age of maturity
and it depicts the pathogenesis of Shiga toxin 2
(Stx2) by this serotype57. More of this toxin is
released by the organism as a defence mechanism,
usually subsequent to detection of unfavourable
in vivo environment created by antibiosis or
immune systems58-60. This idea is pertinent and has
been applied by some researchers in pathogenesis
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and pathogenicity studies of the organism61. One
may guess that the reported high level of toxicity
in the strain O157 during an outbreak may be due
to massive ingestion of phage-susceptible
intestinal E. coli through a common food source.
This is because some toxic E. coli strains which
are reported to be tolerant to low pH and low water
activity in food seasonings62 are sometimes phage-
susceptible63; the attributes that may accord
unpredictable pathogenicity and pathogenesis to
them64.

The World Health Organization estimates
that the global diarrhoeal diseases are responsible
for around 2 million deaths per year (1.7 – 2.5 million
deaths) making these the third highest cause of
death due to infectious diseases worldwide and
the majority of these mortalities occur in children
under age 5 11. Every child is estimated to have
around 3.2 diarrhoeal attacks per year but in
developing countries this figure is much higher
and can sometimes be up to 12 attacks per year10.
This contributes to the high infant and child
mortality rates in these countries. There is also
evidence that the long term consequences of such
a heavy burden of disease in childhood may include
compromised fitness and productivity in
adulthood10. The outbreak of toxic E. coli that
claimed lives recently in Germany and made more
than 1 500 others ill in eight European countries
promotes the dynamism of E. coli as a pathogen
capable of a severe pandemic, whenever basic rules
of hygiene by individuals, communities, industries
and medical laboratories are neglected. The
discovery of this pathogen in frozen foods,
hamburgers and other ‘fast food’10 supports a
possible breach in hygiene. To date, no strain of E.
coli is impervious to heat sterilization. So, their
presence in cooked item leaves more to be desired.
E. coli Gut Ecology

E. coli is no doubt a flora of the alimentary
canal65. It has a tendency to cause infection when
there is a shift in natural balance that exists between
commensals and pathogens66. More serious clinical
manifestations associated with the new toxic
E. coli strain in Germany is a pointer to the
potentials of any microbe to mutate, acquire more
virulent genes and emerge in epidemic proportions
when the opportunity arises. Attendant symptoms
denoting this trend may include bloody diarrhoea,
strokes (when the bacteria invades the kidney),

comas and sometimes seizure. The struggle for
survival by E. coli  in unconducive gut
environments occasioned by a shift in body
balance or arbitrary use of antibiotics might also
fuel the trend of pathogenesis67, 68. Meanwhile,
fundamental knowledge supposes that the
ingestion might be through widespread
consumption of fresh produce69. However, further
events are gradually forming as eye openers to
other likely sources of infections like contamination
of ready-to-eat food by the handlers and non-
adherence to strict rules of hygiene that spread
the organism from their natural ecological niche
into the food70. The use of probiotic supplements
may keep the normal ecological balance of the gut
stable and is preferred to arbitrary use of
antibiotics71.
General Pathogenesis

The process by which the E. coli
pathovars cause disease has been extensively
studied and they generally use a “multi-step
scheme” of pathogenesis similar to that used by
other mucosal pathogens which include
colonization of the mucosal site, evasion of host
defences, multiplication and eventually host
damage leading to disease2,72. Pathogenic strains
of E. coli possess several virulence factors that
determine what pathovar they belong to and the
mode by which they cause diseases. Most of these
strains have particular adherence factors which
enable them to colonise other mucosal surfaces
such as the urethra and respiratory tract which are
outside their normal environmental niche2. The
adhesins form long appendages called fimbriae or
pili which allow the bacteria to adhere to host cells
and activate signal transduction pathways with
the help of secreted toxins and proteins leading to
invasion of the host cells, avoidance of normal
immune responses by the host cell and successful
colonization2, 44.

This pathogenesis depends on the
pathotype in question. Enteropathogenic E. coli
is the major causative organism of diarrhoea in
infants, especially in developing countries73 and
since its identification significant strides have been
made towards understanding the mechanisms by
which this group of E. coli causes disease74. The
characteristic histopathologic feature of EPEC
infections is the formation of attaching and effacing
lesions; a process which involves intimate
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attachment of the bacterium to the epithelial layer
of the intestine leading to cytoskeletal changes
with a build-up of polymerized actin beneath the
adherent bacteria. This leads to effacement of the
intestinal brush border microvilli and destruction
of the apical enterocytes membranes43. This ability
to form attaching and effacing lesions is conferred
on the EPEC by the presence of group of genes
encoded on a 35 kb pathogenicity island (PAI)
referred to as the locus of enterocyte effacement
(LEE)44.

The EPEC are thought to initially bind
intimately to the epithelial cells with the aid of an
adhesin such as intimin and this leads to the
activation of a type III secretion system with
translocation of various effector proteins into the
cells. These effector proteins include Tir, EspF,
EspG and Map44. The binding of the bacteria with
the host cell through the interaction of intimin with
Tir leads to phosphorylation of Tir by several host
tyrosine kinases having the effect of increased
permeability due to loosened tight junctions75. The
inflammatory response causes polymorphonuclear
leucocytes to migrate to the luminal surface and
trigger the adenosine receptor which in turn
upregulates the galanin-1 receptor leading to
increased host cell response to galanin, an
intestinal secretion mediator. EPEC induced
diarrhoea therefore results from multiple
mechanisms which include “active ion secretion,
increased intestinal permeability, intestinal
inflammation and loss of absorptive surface area
resulting from microvillus effacement”2, 44.

Enterohaemorrhagic E. coli also belongs
to the group of attaching and effacing pathogenic
E. coli. Its normal habitat is the intestinal tract of
cattle but it also colonizes the distal ileum and large
intestine in humans2. It has been implicated in a
number of outbreaks of gastroenteritis particularly
in the developed world as the causative organism
of bloody diarrhoea which when complicated can
lead to haemolytic uremic syndrome which can be
fatal. The O157:H7 is probably the most important
and studied serotype of EHEC but several non-
O157 serotypes have also been implicated in
outbreaks worldwide5, 49.

Most of the O157:H7 isolates harbour a
92 kb plasmid which encodes several virulence
factors including adhesins by which the organism
causes disease41. However, the main virulence

mechanism of EHEC is Shiga toxin (Stx) also known
as Verocytotoxin (VT) which is phage encoded and
is the defining characteristic which sets apart the
STEC from other pathotypes of which EHEC
O157:H7 is a subset of this group44. Stx consists of
two subgroups: Stx1 and Stx2 which share only
about 55% amino acid similarity6.

After ingestion, shiga toxins are
produced in the colon and absorbed across the
gut epithelium76.  They then bind to
polymorphonuclear leucocytes in the circulation
and are released at the target organs via the
glycoprotein receptors; globotriaosylceramides
(Gb3) Stxs located on the endothelial cells of the
brain, kidney and intestines44, 76. Following entry
of the toxin into the cells, they interact with
subcellular components and that leads to inhibition
of protein synthesis and apoptosis77. The resulting
damage is as a result of direct toxicity and the
induction of local cytokine and chemokine
production leading to occulusion of the
microvasculature of the target organs. In the
kidneys, this damage can lead to the development
of haemolytic uremic syndrome which involves
haemolytic anaemia, thrombocytopaenia and
eventually acute renal failure2. Most strains also
have the LEE pathogenicity island similar to that
of the EPEC and mostly only these serotypes that
possess the PAI are associated with disease in
humans but there have also been reports of LEE-
negative STEC serotypes implicated in disease
which supports the presence of other virulence
factors apart from Stx78.

Several other possible virulence factors
have been described for the non-O157 strains that
may be responsible for their ability to cause disease
in humans. It has been reported that they carry a
93 kb plasmid which encodes a protein, ToxB similar
to the clostridium toxin and the lifA protein of
EPEC2. The plasmid also encodes the RTX toxin, a
serine protease, a catalase and the StcE protein.
This StcE is thought to cleave the C1 esterase
inhibitor of the complement pathway leading to
tissue damage, oedema and thrombotic changes
seen in EHEC infections2.

Enterotoxigenic E. coli is the main cause
of traveller’s diarrhoea in travellers to the
developing world and infants in those countries6,73.
The symptoms of profuse watery diarrhoea are due
to the production of one or two types of enterotoxin
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by the organism referred to as heat-stable
enterotoxin (HT) or heat-labile enterotoxin (LT).
The LT is very similar in structure and function to
the cholera enterotoxin produced by Vibrio
cholera79. It has about 80% similarity with the
cholera enterotoxin and also has a single A subunit
and five identical B subunits. STs however are
monomeric toxins which consist of two classes,
STa and STb. They are unrelated to each other in
structure and function and only those of the STa
class have been implicated in human disease73.
ETEC colonize the small bowel mucosa with the
aid of proteinaeceous colonisation factors such
as colonization factor antigen (CFA), coli surface
antigen (CS) or putative colonization factor (PCF)
and then elaborate enterotoxins leading to
increased intestinal secretion2. Elaboration of the
LT-1 toxin leads to activation of adenylate cyclase
leading to increased cyclic adenosine
mononphosphate (cAMP) intracellularly. This
increase causes a decrease in sodium absorption
by villous cells and active chloride secretion by
the crypt cells leading to osmotic diarrhoea. STa
binds to the cells with the aid of guanylate cyclase
and this in turn leads to increased cyclic guanylate
monophosphate (cGMP) levels and stimulates
increased chloride secretion while inhibiting the
absorption of sodium chloride and intestinal fluid.
STb however causes loss of the epithelial cells of
the intestinal villi and partial villous atrophy73.

Enteroaggregative E .coli is the second
most common cause of traveller’s diarrhoea and is
becoming increasingly recognised as a cause of
endemic and epidemic diarrhoea all over the world.
It usually causes watery diarrhoea but may be
associated with mucus and blood2. They are
basically described as E. coli that do not elaborate
heat-labile (LT) and heat-stable (ST) enterotoxins
and adhere to Hep-2 cells in a stacked brick pattern
referred to as aggregative adhesion but the
definition may incorporate both pathogenic and
non-pathogenic clones of enteroaggregative
E.coli79.

The pathogenesis of enteroaggregative
E. coli involves colonization and adhesion to the
intestinal mucosa predominantly the colon with
the aid of aggregative adherence fimbriae (aaf) and
other adherence factors80. This is followed by
production of thick mucus by the bacteria and host
cell resulting in the formation of a biofilm on the

surface of the enterocytes and then enterotoxins
and cytotoxins are secreted by the bacteria. This
induces an inflammatory response leading to mild
but significant mucosal damage especially in the
affected areas of the colon and ultimately intestinal
secretion resulting in diarrhoea73, 80-83.

EAEC carry a 100 kb plasmid which
encodes the genes responsible for the aggregative
adherence fimbriae44 which are related to the Dr
family of adhesins. Four variants of AAF have been
described and though the specific receptors are
not known, AAF/II has been shown to bind
fibronectin82, 84. In addition to AAF, a flagellin
protein found on the surface of EAEC causes the
release of IL-8 which stimulates neutrophil
transmigration across the epithelium which can
also lead to mucosal damage and secretion of
fluids84, 85. The enterotoxins produced by EAEC
include: Shigella enterotoxin 1 (ShET1), an
oligomeric enterotoxin present also amongst strains
of Shigella flexineri 2a and thought to be
contributory to the secretory diarrhoea in EAEC
infections2.  They also produce the
enteroaggregative E. coli ST (EAST1) which is a
38-amino-acid homologue of the ETEC STa toxin
and may also contribute to diarrhoea. However
the gene that codes for EAST1 is also found on
many commensal E. coli so the role of this
enterotoxin in EAEC diarrhoea is still under
question86. Several strains also secrete a plasmid-
encoded toxin (Pet) which is an autotransporter
with enterotoxic activity and it causes cytoskeletal
disruption and rounding of the epithelial cells by
cleaving the cytoskeletal protein, spectrin44.

Several virulence factors of the EAEC are
regulated by a single transcriptional activator
referred to as AggR  and epidemiological studies
have shown the association of this regulon with
disease. Kaper et al.,2 suggested that the term
‘typical EAEC’ be reserved for strains that carry
the AggR gene or at least a subset of the AggR-
regulated genes and that the term ‘atypical EAEC’
should be used for strains that do not carry this
regulon.

The strain E. coli O104:H4, identified as
the strain responsible for the most recent outbreak
of E.coli infection in Europe in May 2011, has been
reported to be PCR-positive for the AggR gene
which is typical for enteroaggregative E. coli and
in addition to other genes also possesses the aggA
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gene which encodes for the AAF/1 adhesin. It has
also been reported that the outbreak strain are
moderate to good biofilm producers when cultured
in Dulbecco’s minimum essential medium (DMEM)
supplemented with 0.45% glucose which is typical
and defining for EAEC strains. They therefore
concluded that the outbreak strain is indeed a
typical EAEC which has acquired a bacteriophage
encoding Stx/VT, explaining its ability to cause
haemolytic uremic syndrome in patients affected87.

Enteroinvasive E. coli are obligate
intracellular organisms and have neither flagella
nor adherence factors. They invade the colon and
pass through the microfold cells by transcytosis
into the submucosa layer. Once they invade the
sub-mucosa they evade the host defence
mechanisms with the aid of various effectors
thereby causing diarrhoea44. EIEC are closely
related to Shigella  spp. genetically and
pathogenically and the genes required for the
mechanism of pathogenesis are found on a large
virulence plasmid found in both EIEC and Shigella
species41.

Diffusely adherent E. coli (DAEC) attach
to Hep-2 cell monolayers in a characteristic diffuse
pattern by producing a fimbrial adhesin, F1845,
which belongs to the Dr family of adhesins2. The
infection of an intestinal cell line by DAEC has
been reported to impair the activity and reduce
abundance of sucrase-isomaltase and
dipeptidylpeptidase IV along the brush border
leading to enteric disease88.
Diagnosis and detection of the pathogenic E. coli
strains

In cases of diarrheal disease, specific tests
are required to ascertain the aetiology, as E. coli is
among the normal gastrointestinal flora.
Conventional culture system is not enough to
detect pathogenic strains of E. coli; Polymerase
chain reaction (PCR) is used88-90.  Though
enrichment culture of modified tryptone soya broth
supplemented with 20 mg/l of the antimicrobial
novobiocin is used to isolate EPEC, ETEC, VTEC/
EHEC, EIEC, EAggEC and DEAC from faeces,
appropriate detection require advanced
techniques91. Serotypes of several EPEC colonies
with polyvalent antisera need to be determined for
identification while the adhesion to the tissue
culture cells which can be demonstrated by a
fluorescence actins staining test or DNA-based

for the detection of attachment can reveal the strain
to be EPEC57, 92. For VTEC O157, a combination of
cultural systems and immunology may be used for
detection. This involves the use of an immuno-
magnetic separation (IMS) procedure that utilizes
magnetic beads on which specific VTEC O157
antibody has been coated51, 52. The beads are
inoculated to test for sorbitol non fermenters. The
production of ST/VT and the attendant genes are
detected biologically, immunologically and using
molecular based (PCR) methods (e.g. for eae and
vtx)57, 92

Presumptive positive isolates from
conventional culture for ETEC may be confirmed
using gene probes that are specific for heat labile
(LT) and heat stable (ST) genes92. This can be used
for direct detection from food and water samples.
If EIEC is suspected, a tissue culture is used to
assess the invasiveness or nucleic-acid-based
assays for invasion-associated genes. This is unlike
EAEC and DAEC which are identified strictly based
on assays for aggressive or diffuse adherence in
tissue culture.

To track the source of infection during an
E. coli epidemic, just like the recent case in
Germany, it is imperative to collect samples of
ready-to-eat foods and portable water93. This is
because such an outbreak is usually common
source type. Laboratory confirmation may be
carried out by DNA fingerprinting for the bacteria
from various common sources94. For instance, a
report from Northern France stated that eight
children were rushed to the hospital following
infection from beef burgers noted to have been
contaminated with the E. coli strain, just as the
frozen beef patties in France have been confirmed
to harbour the bacteria10. Since most of these
pathogenic strains of E. coli are readily available
contaminants and are harboured in fruits and raw
vegetable as their reservoir, regions where fast
food and uncooked (salad) food are rampantly
consumed are prone to their epidemics with little
carelessness of the handlers.
Treatment of Diseases Caused by Pathogenic
E. coli

The treatment of E. coli infections
generally depends on the site and severity of
infection. This decision is based on whether the
infection is enteric or non-enteric and the mode of
presentation of the illness. Infections caused by
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intestinal E. coli present mainly as different types
of diarrhoea depending on the pathotype
responsible while the non-intestinal infections
commonly include: meningitis, urinary tract
infections, pneumonia, intra-abdominal infections
and bacteremia. Oral rehydration therapy is the
backbone of treatment of E. coli diarrhoea and it
can be lifesaving if used effectively but it has no
effect on the course of the disease and no
antibacterial properties95, 96.

The main goal of treatment of infections
caused by the STEC group would be to limit the
duration and severity of gastrointestinal symptoms,
to prevent the onset of fatal systemic complications
such as hemolytic uremic syndrome (HUS) and to
prevent further spread of infection in the
community97. Antibiotic treatment of enteric
infections by STEC especially the O157:H7
serotypes remains a controversial issue as there
are no appropriate advanced power randomised
control trials to provide evidence based information
on the benefits or otherwise of antibiotic use.

Several studies that have been done have
concluded that there is no significant advantage
of the use of antibiotic therapy and in fact, they
may predispose to or increase the risk of
development of HUS61, 97. However, Takeda et al.,98

reported that timely commencement of antibiotics
may reduce the duration of the illness and prevent
progression to HUS. Nevertheless, there are other
arguments that preclude the use of antibiotics. Use
of antibiotics which cause bacterial cell lysis may
lead to the release of even more shiga toxin into
the lumen of the gut from where it can be absorbed
into the systemic circulation or may cause
induction of the bacteriophages carrying the stx
genes which leads to increased production of the
toxin59. Mora et al., 99 also reported a high level of
antibiotic resistance amongst STEC in Spain.
Therefore, institution of an inappropriate empirical
therapy could lead to overgrowth of the bacterium
in the gut due to a selective advantage.

Anti-motility agents are also not
encouraged in the treatment because they would
prevent the elimination of the bacteria from the gut
leading to prolonged exposure to the toxin and
worsening the disease100 or possibly leading to
other neurological complications101. The main stay
of treatment is therefore supportive with the goal
being proper and adequate rehydration with

replacement of electrolytes as indicated. Daily
laboratory tests could also be done as suggested
by Tarr et al.,102 to monitor blood count,
electrolytes, serum urea nitrogen and creatinine
levels. The risk of developing HUS is considered
to be past when the platelet count rises or if the
platelet count is stable and symptoms are
resolving102. On the other hand, treatment of
infections caused by enteropathogenic and
enterotoxigenic E. coli with appropriate antibiotics,
shortens the clinical course of the disease
considerably by reducing the duration of diarrhoea
and excretion of the organism103.
The role of antibiotics in the emergence of toxic
pathogens

The toxic E. coli was reported to be
resistant to multiple antibiotics104. Though the
emergence of such resistance is not new105, yet it
might suggest that clinical strains have access to
the environment, by and large, to food items. It
might also be a result of the use of antibiotics in
meat production that resulted in the emergence of
such resistance104. Inappropriate use of antibiotics
may create a non-conducive environment for
bacteria, rather than eliminating them. The bacteria
may therefore develop new features for adaptation
and survival. Such features give them either a
higher level of virulence or basically antibiotic
resistance, hence the need to re-address the
overuse of antibiotics in meat production106.

CONCLUSION

The ubiquitous and versatile E. coli is no
doubt an indispensable tool in research, with huge
proceeds that have benefitted both human and
animals. However, it represents a serious public
health threat worldwide in terms of the potential to
cause life threatening human diseases with high
mortality rates. Numerous sporadic cases and major
epidemics have been associated with E. coli in
ground beef, apple juice, milk, lettuce, salami, and
water, due to poor handling. Hence, prevention
and control of E. coli causing human illnesses
should be seen as a high-priority concern. Food
handlers should be made to undergo compulsory
training on hygiene. Extra care should be taken by
researchers from all wards of life to prevent being
the vehicle for transmission of toxic E. coli from
the laboratory to the environment, which may be
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difficult to control. An urgent international
convention to address the excessive use of
antibiotics in meat production, which has been
spotted as a selective force for the emergence of
toxic E. coli strains is hereby proposed. It hoped
that an increase in public awareness, along with
education associated with safe food handling
practices and concerted efforts by all stakeholders
are required to prevent and control toxic E. coli
outbreaks.
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