The Potency of *Aedes* species in Transmitting Dengue Fever Virus with Evaluating the Susceptibility of Vector Larval Stages to Some Insecticides

Nizamuddin Farooqui^{1*}, Jazem A. Mahyoub², K.M. AL-Ghamdi² and Hamed Ghramh³

¹Department of Biological Science K.A.U. Rabigh Campus, KSA. ²Department of Biological Science, King Abdul-Aziz University, Jeddah, KSA. ³Department of Biological Science King Khaled University, Abha, KSA.

(Received: 24 October 2012; accepted: 07 December 2012)

The present study was planned to use the technique of Polymerase chain reaction (PCR) to detect the virus of dengue fever in mosquito females of *Aedes aegypti* (L.) and *A. caspius* (Pallas). The results indicated that all samples tested for virus of dengue were found negative (-) except one sample of *A. aegypti* which was positive (+). On the other hand, susceptibility levels of mosquito larvae of field strains of *A. aegypti*, which is the vector of dengue fever, to some insecticides currently in use in Jeddah governorate were determined. Taking LC_{50} values (concentration which to kill 50% of mosquito larvae) into consideration, mosquito larvae of *A. aegypti* proved to be more susceptible to Bactilarvae (0.012 ppm) than Safroten (0.020 ppm), Temephos (0.032ppm), Solfac (.039 ppm) and Icon (0.047ppm), respectively. In other words, Bactilarvae proved to be more effective against *A. aegypti* mosquito larvae than Safroten, Temephos, Solfac and Icon (1.6, 2.66, 3.25 and 3.92) respectively.

Key words: Dengue fever, Aedes aegypti, A. caspius, insecticides, PCR.

Dengue fever is an acute virus disease of the tropic and sub-tropic regions around the world, especially in urban and semi-urban areas (Halsted *et al.*, 2001). A recent estimate shows that more than 50 million people are at risk of dengue virus exposure worldwide. Annually, there are 2 million infections, 500,000 cases of dengue hemorrhagic fever, and 12,000 deaths (Guha-Sapir and Schimme, 2005; WHO, 2005).

In Jeddah city, Saudi Arabia, dengue fever made its first appearance in 1994; and by the end of the year, approximately 300 cases were diagnosed and three dengue serotypes (Den-1, Den-2, and Den-3) of viruses were reported (Fakeeh

and Zaki, 2003). In 2006, dengue fever reported cases had risen drastically compared to the earlier recorded numbers. The government of Saudi Arabia has responded to the problem immediately to combat the disease and to bring down the number of confirmed cases drastically. On the other hands, dengue fever is a mosquito-borne viral illness that caused by one of the four serotypes of dengue virus, belonging to the family Flaviviridae and predominantly transmitted by many members of Aedes species. The Lanciott (1992) was the first to describe the technique of polymerase chain reaction PCR to detect dengue virus in the body of the mosquito vector, and isolated the four dengue virus patterns from mosquito A. aegypti, Fouque et al. (2004) and David et al., (2003) identified three types of mosquitoes, A. aegypti, A. hensilli, A. albopictus as vectors of dengue virus. Currently

^{*} To whom all correspondence should be addressed. E-mail: nufarooqui@kau.edu.sa

there is no single vaccine with an economic value is available against serotype of dengue viruses, and therefore the primary protection against infection with the virus depends on the control of mosquitoes. The spraying of pesticides in the hot beds of breeding to reduce the source of infection is a modern method which is used globally to reduce the reproduction and multiplication of mosquito vectors of disease and restrict their number in the environment to the extent that they do not spread the disease (WHO, 1990). This study aims to use the new approach to mosquitoes control through the identification of the carrier type of the virus that causes dengue fever with an evaluation of the effectiveness of some insecticides commonly used in control programs in the province of Jeddah against the larvae of the carrier type.

MATERIALS AND METHODS

Molecular studies of dengue virus Preparation of mosquitoes samples

Light traps of Black-Hole was used to collect samples of adult mosquitoes from various locations of the Jeddah province, samples after collection from the field brought to the laboratory and kept in the very low temperature (-86 ° C) to kill insects by freezing while preserving the genetic material, the female mosquito of *Aedes aegypti* and *Aedes caspius* were isolated by using anatomical microscope and the identification of the species was done with the help of some taxonomic keys (Harbach, 1988; Al-Tubiakh, 1995). Each female have been distributed at each location within the vial tubes and a special code number given to each sample.

Isolate the DNA of the virus

The viral RNA was extracted from the complex of mosquito sample and 140 ml of it was added to Kit Qiagen (QIA amp-Viral RNA Mini Kit Cat.NO.5294) according to the proposed kit protocol by company (MWG-Biotech, Germany). **Polymerase chain reaction (PCR)**

During Reverse transcription polymerase chain reaction (RT - PCR) two primers (D1, D2) were used to identify the virus that causes dengue fever in addition to the DNA extracted with the rest of the chemicals for interaction, (Table 1). The overall mix has been developed (25 micro liter of reaction mixture) inside the PCR tube, which is specially designed to withstand the heat of polymerization chain reactions. (The device, named Ependroff Master cycler ® gradient thermal cycler from Germany.)

Amplification of DNA sequence involve PCR cycles which requires three temperature shifts which are usually done in a thermal cycler. The polymerase chain reaction was done in three steps.

- 1. In the first step the temperature was raised to 95°C for 15 minutes to denature the double stranded DNA (dsDNA) which unzip the DNA strand.
- In the second step the temperature is reduced to 55°C for one minute for annealing of the primers to single strand DNA(ssDNA). (High temperature do not allow primers to anneal efficiently). This allows the link between two strings in 3' end of the one primer and 5' end of other primer.
 The third step is to extend the DNA by
 - The third step is to extend the DNA by raising the temperature to 72°C for two minutes to construct a DNA chain by Taq polymerase enzyme (isolated from different thermophilic bacteria) which attaches at each primers site and extend a new DNA strand. After this extension step the temperature is raised to 72°C for ten minutes. This stage is called Bal final extension. This was the second session after 45 cycles which doubles the DNA to millions. At the end of PCR session the out puts of RT-PCR was subjected to electrophoresis. After heating session was over the Agarose gel of 1.5% concentration was prepared. 3 ml of the sample was mixed with 2 ml of dye (Ethidium Bromide Et-Br) after the integration with barcode (marker) DNA, then the sample was loaded on the gel and a current of 450 volts for a period of eighteen hours was passed to get a length of 100pairs baseline for comparison with a sample of DNA of the virus and backwater from the tissues of insects by using a electrophoresis of nucleic acids and products of PCR samples.

Evaluation of some insecticides against larvae of *Aedes aegypti*

Mosquito strain rearing

Tests were performed on a field strain of Aedes aegypti (L.) raised from wild larvae, collected

1900

from Jeddah. The larvae were reared until pupation and adult emergence took place for maintaining the stock colony. This strain was maintained at a room temperature of $(27 \pm 1^{\circ}C)$ and $(70 \pm 5\% \text{ R. H.})$ with a 14 : 10 (L : D) photoperiod throughout this study.

Compounds tested

The following insecticides were used:

- 1. The synthetic pyrethroid Solfac (Cyfluthrin5%).
- 2. The synthetic pyrethroid Icon (Lambdacyhalothrin2.5%).
- 3. The organophosphates Temephos (Temephos10%).
- 4. The organophosphates Safroten (Propelamphos20%).
- 5. The bacterial insecticide Bactilarvaen (*Bacillus thuringiensis* 1.2%)

Larval bioassay

Susceptibility tests of *A. aegypti* larvae were conducted according to the procedure recommended by WHO (1981). Treatments were carried out by using early fourth instar larvae to serial concentrations of the tested insecticides for 24 h, in groups of glass beakers containing 100 ml of distilled water. Five replicates of 20 larvae each per concentration, and so for control trials were set up. Larval mortalities were scored at 24h posttreatment (WHO, 2005).

Statistical analysis

The average larval mortality data were subjected to probit analysis, for calculating LC_{50} and LC_{95} , values were calculated by using the Finney (1971) method. GW BASIC probit 1 Statistical software was used.

RESULTS AND DISCUSSION

Molecular studies of dengue virus

Fig. 1 shows radiological picture of the agarose gel and by bundles of DNA dyed textured Eithidium bromide (Et Br). As shown in the figure contains the first slot on the DNA scale. DNA Ladder is a cut or packages of different lengths of DNA known to contain holes from 2 to 9 DNA samples isolated from female mosquitoes *A. aegypti* to be detected for their ability to carry the virus that causes dengue fever and take Code numbers of 494 to 502 and contains openings from 10 to 14 DNA samples isolated from female

mosquitoes A. caspius to be detected for their ability to carry the virus that causes dengue fever and take code numbers from MP65 to MP69 and contains the slot 15 on DNA isolated from virus positive samples for comparison. It contains the slot 16 on the sample free of DNA solution (diagnostic) to compare samples negative. The results showed that the sample with code number 501 were carriers of the virus as it appears on the gel packs stacked on top of each other was almost identical to the positive control treatment, which confirms that the sample with code number 501 isolated from female A. aegypti, which was collected from the area of the country was to examine the positive polymerase chain where they were getting package DNA, which with a length of 511 base pairs.

Overall this study showed the ability of female *A. aegypti* in transmitting the virus that causes dengue fever in Jeddah in only one sample which carries the virus, while the rest of the samples were negative. These results are consistent with many previous studies and demonstrated the ability of *A. aegypti* in the transfer of dengue virus using PCR technique in different regions of the world Feres *et al.* 2006; Pinheiro *et al.*, 2005); Urdaneta *et al.*(2005).

Evaluation of some insecticides against larvae of *Aedes aegypti* mosquitoes of dengue virus in Jeddah City

Results of susceptibility levels of fourth instar larvae of A. aegypti following treatments with different concentrations of the chemical insecticides Solfac, Icon, Temephos and Safroten as well as the bacterial insecticide Bactilarvae were recorded in (Table 3). The effective concentrations of the chemical insecticide ranged from 0.01 - 0.12ppm for the A. aegypti mosquito larvae. The corresponding larval mortalities were in respect 17-98% (Table 3). Records of susceptibility levels of A. aegypti mosquito larvae against the bacterial insecticide Bactilarvae are indicated that the range of effective concentrations of the test biocide was 0.01-0.08 ppm Results of larval mortalities varied from 38-96%. According to the LC₅₀ values, the results confirms that the bacterial insecticide Bactilarvae was more effective against the A.aegypti larvae than chemical insecticides, Safroten, Temephos, Solfac and Iconat about 1.6, 2.66, 3.25 and 3.92 folds respectively.

J PURE APPL MICROBIO, 6(4), DECEMBER 2012.

FAROOQUI et al.: ROLE OF Aedes SPECIES IN DENGUE FEVER VIRUS

Overall this study showed the ability of female *A. aegypti* in transmitting the virus that causes dengue fever in Jeddah in only one sample which carries the virus, while the rest of the samples were negative. These results are consistent with many previous studies and demonstrated the ability of *A. aegypti* in the transfer of dengue virus using PCR technique in different regions of the world (Feres *et al.*, 2006; Pinheiro *et al.*, 2005; Urdaneta *et al.*, 2005).

Evaluation of some insecticides against larvae of *Aedes aegypti* mosquitoes of dengue virus in Jeddah city

Results of susceptibility levels of fourth instar larvae of *A. aegypti* following treatments

with different concentrations of the chemical insecticides Solfac, Icon, Temephos and Safroten as well as the bacterial insecticide Bactilarvae were recorded in (Table 3). The effective concentrations of the chemical insecticide ranged from 0.01 - 0.12 ppm for the *A. aegypti* mosquito larvae. The corresponding larval mortalities were in respect 17-98% (Table 3). Records of susceptibility levels of *A. aegypti* mosquito larvae against the bacterial insecticide Bactilarvae are indicated that the range of effective concentrations of the test biocide was 0.01 - 0.08 ppm Results of larval mortalities varied from 38-96%. According to the LC₅₀ values, the results confirms that the bacterial insecticide Bactilarvae was more effective against the

 Table 1. Diagnostic materials used in the detection of dengue virus in the body of female Aedes mosquitoes collected from different locations in Jeddah city

Quantity(µ 1)	Materials
5	PCR buffer *
1	A mixture of nitrogenous bases (dNTP)
1	D1(5'-TCA ATA TGG TGA AAC GCG CGA GAA ACC G-3')
1	D2 (5'-TTG CAC CAA CAG TCA ATG TCT TCA GGT TC-3')
0.5	Taq polymerase *
4	Magnesium chloride solution (25ml)
7.5	Water treatment free of RNA ase
5	RNA extracted
25	Total

* Each of the polymerase enzyme solution, and the regulator in the presence of magnesium salts to stimulate the prefixes on the link DNA to be doubled and the reduction of link prefixes to other sites on the DNA similar to the gene to be isolated.

Compounds	Statical parameters						
	effective Concen. (ppm)	Larval ^a Mortality (%)	LC ₅₀ (LC ₉₅) (ppm)	95%Confiden LFL ^c LC ₅₀ (LC ₉₅)	ce limit UFL ^a LC ₅₀ (LC ₉₅)	Slope	X ² (df=3) ^b
Solfac	0.02 - 0.12	15 - 97	0.039(0.110)	0.03 (0.09)	0.04(0.13)	3.8	1.28
Icon	0.02 - 0.12	10-90	0.047(0.133)	0.04(0.11)	0.05(0.15)	3.6	1.10
Temephos	0.01 - 0.10	28-94	0.032(0.124)	0.03(0.10)	$\begin{array}{c} 0.04(0.15) \\ 0.03(0.11) \\ 0.015(0.12) \end{array}$	2.75	1.24
Safroten	0.01 - 0.10	31 - 95	0.020(0.090)	0.02(0.07)		2.64	2.98
Bactilarvae	0.01 - 0.08	38-96	0.012(0.091)	0.008(0.07)		1.88	3.11

 Table 2. Larvicidal activity of tested compounds against A. aegypti

a : Five replicates, 20 larvae each. control - nil mortality

b :Tabulated value of $C_2 = 7.81$ when the (df)degrees of freedom=3, The level of significance (0.05) to which is larger than the calculated value of C_2 and this confirms that the data homogeneous .

c:LFL - lower fiducial limit.

d:UFL - upper fiducial limit, Ç 2 - Chi-square value

J PURE APPL MICROBIO, 6(4), DECEMBER 2012.

A. aegypti larvae than chemical insecticides, Safroten, Temephos, Solfac and Iconat about 1.6, 2.66, 3.25 and 3.92 folds respectively.

Column A: is included to measure the size of the DNA of the virus100-base pairs. Column B: samples positive carriers of the virus that causes dengue fever. Column C:comparison of positive for the virus length of 511base pairs. Column D:Comparison negative which is a diagnostic solution is free of DNA.

Fig. 2. Lethal concentrations for 50% of fourth instar larvae of the mosquito *Ae. aegypti* after 24 hours of treatment with pesticides commonly used in mosquito control programs in Jeddah

J PURE APPL MICROBIO, 6(4), DECEMBER 2012.

REFERENCES

- Aburas, H. M., ABURAS Index: A Statistically Developed Index for Dengue-Transmitting Vector Population Prediction. World Academy of Science, *Engineering and Technology* 2007; 32: 1307-6884.
- 2. Al-Ghamdi, K.; and J. A. Mahyoub., Seasonal abundance of Aedes aegypti in Jeddah Governorate with evaluating its susceptibility to some conventional and non-conventional insecticides. King Abdul Aziz University Journal for Meterology, Environment and Arid Land Agriculture. 2010; **20**(1); 147-171.
- Al-Ghamdi, K.; Z.I.AL-Fifi, M.S.Saleh, H.A.AL-Qhtani and J. A. Mahyoub., Insecticide susceptibility of *Aedes aegypti*, the vector of dengue fever, in Jeddah governorate, Saudi Arabia. *Biosciences, Biotechnology Research Asia.*, 2008; 5 (2).
- 4. Al-Tubiakh, S.S., Bionomics of mosquito in Kuwait. M.Sc. Thesis of Public Health, Science (Vector control), High Institute of Public Health, *University of Alexandria, Egypt.* 1995; 219.
- Canyon, D.V. and J.K.L. Hii., Insectcide susceptibility status of *Aedes aegypti*(Diptera: Culicidae) from Townsville .Aust. J. Entomol 1999; **38**: 40-43.
- 6. CDC, Centers for disease control and prevention. Update: West Nile Virus activity eastern United States. MMWR Morb. *Mortal wkly Re* 2005; **49**: 1044-1077
- David, A.; M. Harry; A. Savage ; J. Hajjeh; M. David; A. Richard; G. Vance; G. Clark and G. Duane., Outbreak of dengue fever in Palau, Westren Pacific, rick factory for injection. Am. J. Trop. Med. Hyg. 2003; 69: 135-140.
- Fakeeh, M. and A. M. Zaki., Dengue in Jeddah, Saudi Arabia, 1994-2002. *Dengue Bulletin* 2003; 13(27): 18
- 9. Finney, D.J., Probit Analysis, 3rd edition. Griffn, Cambridge University Press, Cambridge.1971.
- Fouque F.; G. Romuald. and G. Pascal., Epidemiological and entomological surveillance of the co-circulation of DEN-1, DEN-2 and DEN-4 viruses in French Guiana. *Tropical Medicine* & International Health. 2004; 9: 41-45.
- Freitas, R.M.; A.E. Eiras and R.L. Oliveira., Field evaluation of effectiveness of the BG-Sentinel, a new trap for capturing adult *Aedes aegypti* (Diptera: Culicidae). *Mem. Inst. Oswado Cruz.*

2006; **101**(3): 321-325.

- 12. Guha-Sapir, D., Schimme, B., Dengue fever: new paradigms for a changing epidemiology. *Emerg. Themes Epidemiol.* 2005; **12**: 13.
- Halstead, S.B; T.G Streit; J.G Lafontant; R. Putvatana; K. Russell; W. Sun; N. Kanesa-Thasan; C.G Hayes and D.M. Watts., Haiti: absence of dengue hemorrhagic fever despite hyperendemic dengue virus transmission. Am. J. Trop.Med. Hyg. Sep. 2001; 65(3): 180-183.
- Harbach, R.E., The mosquitoes of the subgenus *Culex* in Southwestern Asia and Egypt (Diptera: Culicidae). *Contribution of the American Entomological Institute*. 1988; 24(1): 1-240.
- Lanciotti, R.; M.C.H. Calisher; D.J. Gubler and G. Vorndam., Rapid detection and typing of dengue viruses form clinical samples by using reverse transcription-polymerase chain reaction. *J. Clin. Microbiol.* 1992; **30**(3): 545-551.
- Lawler, S.P; D.A. Dritz; J.A. Christiansen and A.J. Cornel, Effects of lambda-cyhalothrin on mosquito larvae and predatory aquatic insects. *Pest Management Science* 2007; 3: 234-240.
- Nazni, W.A.; H.L. Lee and A.H. Azahari., Adult and larval insecticide susceptibility status of *Culex quinquefasciatus*(Say) mosquitoes in Kuala Lumpur Malaysia. *Tropical Biomedicine* 2005; 22(1): 63-68.
- Pinheiro, V.C.; W.P. Tadei; P.M. Barros; P.F. Vasconcelos and A.C. Cruz., Detection of dengue virus serotype 3 by reverse transcriptionpolymerase chain reaction in *Aedes aegypti* captured in Manaus Amazonas. *Mem Inst Oswaldo Cruz.* 2005; **100**(8): 833-839.
- Saleh, M.S. and M.I. Aly., The biological of three insect growth regulators on *Culex pipiens* L. Anz. Schadlingskde., pflanzenschutz, *Umweltschutz* 1987; 60: 34-37.
- Urdaneta, L.; F. Herrera; M. Pernalete; N. Zoghbi; Y. Rubio-Palis; R. Barrios; J. Rivero; G. Comach; M. Jiménez and M. Salcedo, Detection of dengue virus in field caught Aedes aegypti in Maracay, Aragua state, Venezuela by tye-specific polymerase chain reaction .Infect Genet Evol 2005; 5(2): 177-84.
- World Health Organization., Manual on environmental management for mosquito control. 1990.
- World Health Organization., Prevention and control of dengue and dengue hemorrhagic fever. WHO, Regional Publication, 2005; 29: 134.

1904