Ver-1 Gene Sequencing and Homology of Two Egyptian *Aspergillus* Isolates

Mohamed Mokhtar Mohamadein^{1*}, Rasha Mohamed Farrag² and Eman Ahmed Helmy³

¹⁻³Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt. ¹Faculty of Applied Medical Science, King Salman Ben AbdelAziz University, Al-Kharj, KSA.

(Received: 18 September 2012; accepted: 23 November 2012)

Sequencing of the conserved region of ver-1 gene in each of two Egyptian Aspergillus sp., A. nidulans and A. parasiticus isolates, was conducted. Variation in DNA size (515 bp for A. nidulans and 495 bp for A. parasiticus) was observed with a high homology degree of 97%, however with no difference in the translated amino acid sequence. The obtained ver-1 gene sequence of both isolates was matched, using genebank database, with that of each of a no. of strains belonging to Aspergillus species, protein homology with the most similar strain was then conducted. No difference in the translated amino acids was observed for ver-1 gene of the A. nidulans isolate while two amino acid variations were observed in case of A. parasiticus isolate. The obtained sequences of the two investigated local isolates revealed no matching results with any of the A. nidulans strains on the gene bank database reflecting the uniqueness of the A. nidulans Egyptian isolate.

Keywords: Aspergillus sp.; Conserved region; Ver-1 gene; Homology.

Most aspergilli that produce aflatoxin are members of *Aspergillus* section Flavi, however isolates of several *Aspergillus* species not closely related to section Flavi also have been found to produce strigmatocystin and aflatoxin¹.

However, in agricultural commodities, they are primarily produced by *Aspergillus flavus* and *Aspergillus parasiticus*. *A. flavus*, *A. pseudotamarii*, and *A. ochraceoroseus* produce only the B aflatoxins, and *Aspergillus nomius*, *A. bombycis*, and *A. parasiticus* produce both B and G toxins²⁻¹¹.

However, as many as 20 different aspergilli, including *A. nidulans*, and species of *Bipolaris*, *Chaetomium*, *Farrowia* and *Penicillium*, produce (intermediates in the aflatoxin pathway) sterigmatocystin (ST), a highly toxic intermediate in AFB1 biosynthetic pathway^{12,13}. Even though the AFB1 biosynthetic pathway in *A. flavus* and *A. parasiticus* and the ST biosynthetic pathway in *A nidulans* are believed to be similar, cooperative studies utilizing all three species being pursued to identify any key differences which exist in biosynthesis or regulation and shed light on the evolution and acquisition of the pathway by the aspergilli and other genera.

Aflatoxins and sterigmatocystin are synthesized by the polyketide metabolic pathway and the general accepted scheme for AF/ST biosynthesis is: polyketide precursor \rightarrow norsolonic acid, NOR \rightarrow averantin, AVN \rightarrow hydroxyaverantin, HAVN \rightarrow averufanin, AVNN \rightarrow averufin, AVF ® hydroxyversicolorin, HVN \rightarrow versiconal hemiacetal acetate, VHA \rightarrow versicolorin B, VER B \rightarrow versicolorin A, VER A \rightarrow demethylsterigmatocystin, DMST \rightarrow sterigmatocystin, ST \rightarrow O-methylsterigmatocystin, OMST \rightarrow aflatoxin B1, AFB1. A branch point in

^{*} To whom all correspondence should be addressed. E-mail: m2121973@hotmail.com

the pathway has been established from VER B leading to different aflatoxin structural forms B1 and $B2^{14-20}$.

The regulatory gene, aflR, coding for the pathway regulatory factor (AFLR protein), controls the expression of the structural genes at the transcriptional level^{15,21}.

Sterigmatocystin, the penultimate precursor to aflatoxin, is produced by a number of non-aflatoxigenic fungi including *A. nidulans*. Brown *et al.*²² characterized a 60 kb DNA region in *A. nidulans* that consists of a cluster of genes responsible for 25 co-regulated transcripts involved in sterigmatocystin biosynthetic pathway in this fungus.

In *A. flavus* and *A. parasiticus*, the order of the genes and their direction of transcription of the aflatoxin cluster genes are identical and there is a high degree of sequence conservation (>95%) at both the nucleotide and amino acid level. However, the order of the genes in the *A. nidulans* sterigmatocystin gene cluster is somewhat different from that of *A. parasiticus* and *A. flavus*²³.

Ver-1 encodes a 28-kDa NADPHdependent reductase involved in conversion of versicolorin A (VA) to demethylsterigmatocystin²⁴⁻²⁶. Liang *et al.*,²⁷ confirmed that *ver-1*A of the two copies of *ver-1* (*ver-1A* and *ver-1B*) is the only functional *ver-1* gene in *A. parasiticus* SU-1 and that its gene product is involved in the conversion of versicolorin A to sterigmatocystin in AFB1 biosynthesis.

The current study focused on sequencing the conserved region of *ver-1* gene of two Egyptian local isolates; namely *A. parasiticus* (B1, B2, G1 and G2 aflatoxin producer) and *A. nidulans* (nonaflatoxigenic), subsequent homology studies were conducted among the two investigated isolates and other matching isolates on the genebank database.

MATERIALS AND METHODS

Sequence comparison

All the homology and comparison analyses were achieved by Database BIAST nr: GenBank+EMBL+DDBJ+PDB. Protein similarities of the *ver*-1 conserved region BLASTp searches were done against the non- redundant protein database²⁸.

J PURE APPL MICROBIO, 6(4), DECEMBER 2012.

Fungal species

Two Egyptian fungal species namely; Aspergillus parasiticus, and Aspergillus nidulans were used in this study and kindly obtained from the culture collection of Al-Azhar University. Fungal growth media

The fungal isolates under investigation were grown on Malt Extract Agar (MEA) (Malt extract, 20; glucose, 20; peptone, 1; agar, 20 g/L) for maintenance and Yeast Extract Sucrose (YES) (Yeast extract, 20; sucrose, 150 g/L) for DNA isolation.

DNA - based techniques

Fungal DNA extraction using Qiagen kit

The mycelial growth from 5-7 days old cultures on MEA slopes were scraped by using 2 ml of sterile distilled water. The two mls of spore suspension were used to inoculate a 100 ml YES medium in a universal 250ml flask and incubated with gentle shaking (180 rpm at 28ÚC for 48h). The mycelia from the flasks were harvested by filtration under aseptic conditions using a microcloth, washed with sterile distilled water and stored at -20 overnight in a sterile Petri dishes. The mycelia were lyophilized in a Heto lyophilizer system model Maxi Dry. The freeze-dried mycelia were ground in a mortar using a sterile pestle, and the powdery samples were placed in eppendorf tubes (1.5 ml). DNA extraction was conducted using DNeasy kit (Qiagen-Germany).

Polymerase chain reaction (PCR)

Tag PCR Master mix (purchased from Qiagene) was used to amplify the desired gene using a thermal cycler machine (gradient Robocycler 96 Stratagene, USA) by combining 50ml of the Master Mix (2.5U Tag DNA polymerase, 200mM of each dNTP, 1x Qiagene PCR buffer), 50 pmole of each primers, 200 ng DNA as a template in 100ml of total reaction volume. The mixture was then placed to the thermal cycler machine directly to start the appropriate PCR program including a universal denaturation cycle (5 min at 94°C), 30 cycles of annealing/extension reactions (20 sec at 94°C, 30 sec at 75°C and 60 sec at 72°C) and cycle of final extension step (5 min at 72°C) followed by soaking at 4°C. The primers sequence used in the amplification of ver-1 gene was F direction (5'gccgcaggccgcggagaaagtggt-3') and R direction (5'ggggatatactcccgcgacaacagcc-3')²⁹.

Agarose gel electrophoresis

Agarose (2%) was added to 100 mL (1 X) of electrophoresis buffer (10X TBE, Tris-Borate EDTA, tris-base 108g/l; boric acid, 55g/L; 40 mL of 0.5M EDTA (pH8)). The gel was boiled and ethidium bromide solution (0.5mg/mL) was added at 55°C, then poured into sealed gel tray and the appropriate comb was inserted³⁰. After agarose solidification, stop loading solution was added to the samples and loaded along with DNA ladder. The gel was visualized and imaged using the transilluminator of a gel documentation system (BIO-RAD, Gel Doc 2000).

Purification of PCR products from the gel

The electrophoresed PCR products were purified using a QIAEX II gel extraction kit (Qiagen).

DNA sequencing

Sequencing of amplified PCR fragments was carried out by Cy5/Cy5.5 Dye Primer Sequencing kit from Visible Genetics Inc. for use with the Open Gene automated DNA sequencing system^{31,32}.

RESULTS

Sequencing results of the conserved region of *ver-1* gene amplified from the two investigated isolates *A. nidulans* (nonaflatoxiginc) and *A. parasiticus* (aflatoxins B1, B2, G1 and G2 producer) are shown in Fig.(1) and Fig. (2), respectively.

Sequencing results of *ver-1* gene of the two investigated isolates indicated variations in the size and bases of the gene. Protein homology between the investigated *A. nidulans* and *A. parasiticus* isolates ranged from 90% to 100% at a coverage query of 97%. Unfortunately, the gabs between the two sequences resulted in size differences however with no change in the translated amino acids (Fig. 3).

The obtained *ver-1* gene sequence of *A. nidulans* isolate was matched with that on the gene bank of each of 27 fungal strains (Table 1). Those 27 fungal strains belong to five *Aspergillus* species; *A. oryzae* (11 strains), *A flavus* (9 strains), *A. parasiticus* (4 strains) *A. sojae* (2 strains) and *A. nomius* (1strain). Interspecific similarity levels were observed and ranged from 91 to 100% at a query coverage range from 7% to 96%, respectively. However, 100% identities were observed with six strains (four strains of *A. oryzae*; NFRI 1133, RIB 62, SRRC 2098, SRRC 2103 and two strains of *A. flavus*; NRRL3357, NPLTX21-5) at a query coverage ranging only from 7 to 86%. Also, the results of sequencing indicated that *ver-1* DNA sequence of *A. nidulans* was highly conserved particularly among strains of *A. oryzae* and *A. flavus*.

Interestingly, no sequence matching was observed with *A. pseudotamarii*, *A. ochraceoroseus* (B1 producers), *A. bombycis* (B and G producers), *Bipolaris* sp., *Chaetomium* sp., *Farrowia* sp., *Penicillium* sp., (intermediate producers) and other non-producer species such as *A. niger*. Moreover, no sequence matching with any *A. nidulans* strain was observed.

On the level of protein homology, only one strain (Aspergillus flavus strain AF70) was chosen for homology study for being the most similar in its ver-1 sequence to that of the investigated A. nidulans local isolate. (Fig. 4 and Table 1). The translated alignment between the conserved codon of the obtained sequence and that of the A. flavus strain AF70 (AY510453.1) revealed 99% identity at a coverage query of 96% and the substitution occurred at base 60, however on the level of protein translation no change was obtained due to substitution at the third base of the codon no. 60 (Fig. 4).

Regarding the second investigated isolate, *A. parasiticus*, its *ver-1* gene was matched with that of each of 23 fungal strains belonging to five *Aspergillus* species; *A. oryzae* (9 strains), *A. flavus* (7 strains), *A. parasiticus* (4 strains), *A. sojae* (2 strains) and *A. nomius* (1 strain). Interspecific similarity levels were observed and ranged from 94 to 99% at a query coverage range from 16% to 96%, respectively (Table 2).

Also, it should be noted that *ver-1* DNA sequence of the investigated *A. parasiticus* isolate was highly conserved among strains of *A. oryzae* and *A. flavus*, in particular.

No sequence matching was observed with A. pseudotamarii, A. ochraceoroseus (B1 producers), A. bombycis (B and G producers), Bipolaris sp., Chaetomium sp., Farrowia sp., Penicillium sp. (intermediate producers) and other non-producer species such as A. niger. Also, no

Accession	Description	Max score	Total score	Query coverage	E Max e value ident
AY510453.1	Aspergillus flavus isolate AF70 aflatoxin biosynthesis	898	898	96%	0.0 99%
	gene cluster, complete sequence				
AB007804.1	Aspergillus oryzae ver-1 gene, partial cds, strain NFRI 1133	887	887	96%	0.0 98%
AB195804.1	<i>Aspergillus</i> oryzae ver-1, verA genes for dehydrogenase/ ketoreductase, monooxygenase, complete cds	881	881	96%	0.0 98%
AY510452.1	Aspergillus flavus isolate BN008 aflatoxin biosynthesis gene cluster, complete sequence	869	869	96%	0.0 98%
AB007805.1	Aspergillus flavus ver-1 gene, partial cds, strain RIB 1427	848	848	96%	0.0 97%
AB071288.1	Aspergillus oryzae genes for AFLR, AFLJ, Putative shrot- chain alchohol dehydrogenase, Putative norsolorinic acid reductase and VER1. complete cds	843	843	96%	0.0 97%
AB196490.1	Aspergillus oryzae DNA, aflatoxin biosynthesis gene cluster, complete sequence, strain: RIB40	843	843	96%	0.0 97%
AB076804.1	Aspergillus oryzae avnA, verB, avfA, omtB genes for cytochrome P450 monooxygenase, averufin dehydrogenase, O-methyltransferase B, complete cds	843	843	96%	0.0 97%
AP007159.1	Aspergillus oryzae RIB40 DNA, SC026	843	843	96%	0.0 97%
AB007803.1	Aspergillus orvzae ver-1 gene, partial cds, strain NFRI 1134	843	843	96%	0.0 97%
AY510451.1	Aspergillus flavus isolate AF13 aflatoxin biosynthesis gene cluster, complete sequence	769	769	95%	0.0 94%
AY371490.1	<i>Aspergillus</i> parasiticus aflatoxin pathway gene cluster,	765	765	96%	0.0 94%
AB007808 1	Aspergillus sojae ver-1 gene partial cds strain NFRI 1148	765	765	96%	0.0 94%
AB007807 1	Aspergillus sojae ver-1 gene, partial eds, strain NFRI 1147	765	765	96%	0.0 94%
M91369 1	Aspergillus parasiticus ketoreductase (ver1) gene, complete cds	765	765	96%	0.0 94%
AY510455.1	Aspergillus flavus isolate AF36 aflatoxin biosynthesis	763	763	95%	0.0 94%
AB007806 1	Asnergillus flavus ver-1 gene partial cds strain NFRI 1258	763	763	95%	0.0 94%
AF452809.1	Aspergillus parasiticus strain ATCC 56775 aflatoxin	715	715	96%	0.0 92%
U63994.1	Aspergillus parasiticus truncated ketoreductase gene, complete	715	715	96%	0.0 92%
AY510454.1	Aspergillus nomius isolate AN13137 aflatoxin biosynthesis	673	673	95%	0.0 91%
XM_00237	Aspergillus flavus NRRL3357 aflM/ ver-1/ dehydrogenase/	521	814	86%	1e-100%
XM_00182	Aspergillus oryzae RIB40 hypothetical protein partial mRNA	483	764	86%	144 5e- 98%
AB176961.1	<i>Aspergillus oryzae</i> DNA, aflatoxin biosynthetic pathway gene cluster, breakdown and restoration region sequence, strain: RIB 62	196	196	20%	135 7e-100% 47
AY987856.2	Aspergillus flavus isolate NPL TX13-5 Ver1 (ver1) gene,	86.1	86.1	8%	2e-13 100
AY987855.2	Aspergillus flavus isolate NPL TX21-5 Ver1 (ver1) gene,	86.1	86.1	8%	2e-13 100
DQ112071.1	Aspergillus oryzae isolate SRRC 2098 amdA gene, partial sequence: and Ver1 (ver1) gene partial edg	69.4	69.4	7%	2e-08 100
DQ112070.1	Aspergillus oryzae isolate SRRC 2103 amdA gene, partial sequence; and Ver1 (ver1) gene, partial cds	69.4	69.4	7%	2e-08 100 %

 Table 1. Distribution and homology of ver-1 gene of A. nidulans among Aspergillus sp.

J PURE APPL MICROBIO, 6(4), DECEMBER 2012.

1534

sequence matching was detected with all *A*. *nidulans* strains on the genebank database, again reflecting the unique sequence of this *A*. *nidulans* isolate.

On the level of protein homology, only one *A. parasiticus* strain (gbAY371490.1), the most similar strain (Table 2) was chosen for homology study (Fig. 5). Regarding the translated alignment, a 98% identity was observed at a coverage query of 94%. Substitution occurred at the bases 168, 171, 177, 297, 309, 315 and 321. However, on the level of protein translation only two changes were observed at the positions 57 (serine was replaced by cysteine) and 103 amino acid (cysteine was

Accession	Description	Max	Total	Query	Е	Max
	-	score	score	coverage	e value	ident
AY371490.1	<i>Aspergillus</i> parasiticus aflatoxin pathway gene cluster, complete sequence	845	845	94%	0.0	99%
AB007808.1	Aspergillus sojae ver-1 gene, partial cds, strain NFRI 1148	845	845	94%	0.0	99%
AB007807.1	Aspergillus sojae ver-1 gene, partial cds, strain NFRI 1147	845	845	94%	0.0	99%
M91369.1	Aspergillus parasiticus ketoreductase (ver1) gene, complete cds	845	845	94%	0.0	99%
AY510451.1	Aspergillus flavus isolate AF13 aflatoxin biosynthesis gene cluster, complete sequence	800	800	94%	0.0	97%
AY510455.1	Aspergillus flavus isolate AF36 aflatoxin biosynthesis gene cluster, complete sequence	795	795	94%	0.0	97%
AB007806.1	Aspergillus flavus ver-1 gene, partial cds, strain NFRI 1258	795	795	94%	0.0	97%
AB007805.1	Aspergillus flavus ver-1 gene, partial cds, strain RIB 1427	761	761	94%	0.0	95%
AB071288.1	Aspergillus oryzae genes for AFLR, AFLJ, Putative shrot-chain alchohol dehydrogenase, Putative norsolorinic acid reductase and VER1, complete cds	756	756	94%	0.0	95%
AB196490.1	Aspergillus oryzae DNA, aflatoxin biosynthesis gene cluster, complete sequence, strain: RIB40	756	756	94%	0.0	95%
AB076804.1	Aspergillus oryzae avnA, verB, avfA, omtB genes for cytochrome P450 monooxygenase, averufin dehydrogenase, O-methyltransferase B, complete cds	756	756	94%	0.0	95%
AP007159.1	Aspergillus orvzae RIB40 DNA, SC026	756	756	94%	0.0	95%
AB007803 1	Aspergillus oryzae ver-1 gene, partial cds, strain NFRI 1134	756	756	94%	0.0	95%
AF452809.1	Aspergillus parasiticus strain ATCC 56775 aflatoxin biosynthetic gene cluster, partial sequence	741	741	94%	0.0	95%
U63994.1	Aspergillus parasiticus truncated ketoreductase gene, complete sequence	741	741	94%	0.0	95%
AY510453.1	Aspergillus flavus isolate AF70 aflatoxin biosynthesis gene cluster, complete sequence	739	739	94%	0.0	95%
AY510452.1	Aspergillus flavus isolate BN008 aflatoxin biosynthesis gene cluster, complete sequence	728	728	94%	0.0	94%
AB007804.1	Aspergillus oryzae ver-1 gene, partial cds, strain NFRI 1133	728	728	94%	0.0	94%
AB195804.1	Aspergillus oryzae ver-1, verA genes for dehydrogenase/ ketoreductase, monooxygenase, complete cds	723	723	94%	0.0	94%
AY510454.1	Aspergillus nomius isolate AN13137 aflatoxin biosynthesis gene cluster, complete sequence	630	630	94%	2e-177	′90 %
XM_0018 21469.1	Aspergillus oryzae RIB40 hypothetical protein partial mRNA	460	694	84%	2e-126	598 %
XM_002 379900.1	Aspergillus flavus NRRL3357 aflM/ ver-1/ dehydrogenase / ketoreductase, mRNA	444	672	84%	2e-121	. 97 %
AB176961.1	Aspergillus oryzae DNA, aflatoxin biosynthetic pathway gene cluster, breakdown and restoration region sequence, strain: RIB	132 62	132	16%	2e-27	96 %

Table 2. Distribution and homology of ver-1 gene of A. parasiticus among genebank Aspergillus sp.

1536 MOHAMADEIN et al.: VER-1 GENE OF TWO EGYPTIAN Aspergilli

GCCGCAGGCCGCGGAGAAAGTGGTACCGACGCTATCGCAATCCAGGCCGATGTCGGGGATCCTGAGGCAACT GCGAAGTTAATGGCGGAGACGGTGCGCCATTTTGGCTACCTGGACATCGTGTCATCGAACGCTGGAATTGTAT CGTTCGGTCACCTGAAAGACGTGACCCCAGAAGTATGAACCACAGATAACGCATTAAAGGCATAAGCTAAAA AAAGTATTAGGAATTTGACCGGGTCTTCCGGGTCAACACCCGTGGCCAGTTCTTCGTGGCGCGGGAGGCCTAT CGCCATATGCGGGAAGGAGGTCGAATTATCCTGACCAGCTCTAACACTGCTTGCGTGAAGGGGGTCCCCAAG CATGCTGTATACTCCGGGTCCAAGGGGGCTATTGACACCTTTGTTCGCTGCATGGCAATCGACTGCGGAGACA AGAAGATCACCGTGAATGCCGTGGCTCCTGGAGCCATTAAGACTGATATGTTTTTGGCTGTGTCGCGGGAGGAGA AGAAGATCACCGTGAATGCCGTGGCTCCTGGAGCCATTAAGACTGATATGTTTTTGGCTGTGTCGCGGGAGAT TATCCCC

Fig. 1. Sequence of the conserved region of ver-1 gene isolated from A. nidulans (515 bp).

Fig. 2. Sequence of the conserved region of <i>ver-1</i> gene isolated from <i>A. parasiticus</i> (4)	495 t	bŗ)
--	-------	----	----------

Alignment	Percent identity
Query 1 AAGRGESGTD 30	100%
AAGRGESGTD	
Sbjet 1 AAGRGESGTD 30	
Query 2 POAAEKVVP 28	100%
PQAAEKVVP	100000
Sbjet 2 PQAAEKVVP 28	
Ouerv 28 RYHFLRGLR 2	100%
RYHFLRGLR	
Sbiet 28 RYHFLRGLR 2	
Ouery 504 PATOPKTYOS*WLOE 460	100%
PATOPKTYOS*WLOE	
Sbiet 483 PATOPKTYOS*WLOE 439	
Ouery 29 SVPLSPRPA 3	100%
SVPLSPRPA	
Sbiet 29 SVPLSPRPA 3	
Ouery 51	95%
CRGS*GNCEVNGGDGAPFWI.PGHRVIERWNCIVRSPERRDPRSMNHR*RIKGIS*KKY*E.230	
CRGS*G+ E+NGGDGAPEWI PGHRVIERWNCIVRSPERRDPRSMNHR *RI+ GI *KK+*E	
Shirt 30	
CRGS*GDSEINGGDGAPFWLPGHRVIERWNCIVRSPERRDPRSMNHR*RIOGIC*KKH*E 209	
Query 231	95%
FIDEVERVINTEGOFFVAREAVEHMBEGGETILLTSSNTACVKGVPKHAVYSGSKGAIDTFVR 410	3374
FIDURDINTD COFFUEDRE VOHMDE CODITIUTS SNTECUKGUDKHEVYSGSKGETDTEV	
Sbict 210	
FDBVERVNTBGOFFVAREAVRHMBEGGELILTSSNTACVKGVPKHAVYSGSKGALDTFVH 389	
Ouerv 411 CMAIDCGDKKITVNAVAPGAIKTDMFLAVSRE 506	95%
CMAIDCGDKKITVNAVAPGAIKTDMFLAVSBE	5570
Sbict 390 CMAIDCGDKKITVNAVAPGAIKTDMFLAVSRE 485	
Query 514	02
GIYSRDTAKNISVIMAPGATAFTVIFLSPOSIAMORTKVSIAPLDPEYTACLGTPFTOAV 335	32
G SRDTAKNISVIMAPGATAFTVIFLSPOS+AMO TKVSIAPLDPEYTACLGTP TOAV	
Shirt 493	
GYTSRDTAKNISVIMAPGATAFTVIFLSPOSMAMO*TKVSIAPLDPEYTACLGTPLTOAV 314	
Onerv 334 LELV 323	02
	32
Shict 313 LELV 302	
	01
TENEDDULTDETDENS * VEF * LMDLMD VL WELLL GEDLEGDDT LORODSMTDC DOSONG& 95	51
TENNEDDULTDET SNSK FFK MD MEVIAFILLGSDISGDETTOFODSMIDCDGSONGS	
Shine 252	
TRANSPOLITERTISMS*CFF*HMP*MPVL/FTLLCSPLSCPPTCOPOPSMTPCPCSONCE 74	
Cherry 94 DSDDLTSOLDODDHD 47	01
Anera at tottotantantantanta ta	91
Shint 72 DEDDITELEDODDUD 26	
CONTRACTOR AND INCOMPANY AND A DESCRIPTION OF A DESCRIPANTE A DESCRIPANTE A DESCRIPANTE A DESCRIPTION OF A D	_
	00
Onery 30 VGTTFSAACG 1	90
UNETY SO VOTTERAACG 1 +OTTERAACG 1 +OTTERAACG 1	90

Fig. 3. Sequence comparison of the VER protein homologs translated from GenBank database entries for *A. nidulans* sequence as a query and the sequence of *A. parasiticus* as subject

```
Aspergillus flavus isolate AF70 aflatoxin biosynthesis gene cluster, complete sequence Length=75829
Score = 404 bits (876), Expect = 1e-115
Identities = 163/165 (98%), Positives = 165/165 (100%), Gaps = 0/165 (0%)
Frame = +2/+2
         VVPTLSQSRPMSGILRQLRS*WRRRCAILATWTSCHRTLELYRSVT*KT*PQKYEPOITH 199
Ouery 20
                  SRPMSGILRQLRS*WRRRCAILATWTSCHRTLELYRSVT*KT*P
Sbjet 41687 MVPTLSQSRPMSGILRQLRS*WRRRCAILATWTSCHRTLELYRSVT*KT*PQKYEPQITH 41866
         *RHKLKKVLGI*PGLPGQHPWPVLRGAGGLSPYAGRRSNYPDQL*HCLREGGPQACCILR 379
Ouerv 200
          RHKLKKVLGI*PGLPGOHPWPVLRGAGGLSPYAGRRSNYPD
                                                              *HCLREGGP
                                                                          VOCIT R
Sbict 41867 *RHKLKKVLGI*PGLPGCHPWPVLRGAGGLSPYAGRRSNYPDOL*HCLREGGPQACCILR 42046
Query 380 VQGGY*HLCSLHGNRLRRQEDHRECRGSWSH*D*YVFGCVAGVYP 514
Sbjct 42047 VQGGY*HLCSLHGHRLRRQEDHRECRGSWSH*D*YVFGCVAGVYP 42181
```

Fig. 4. Sequence comparison of the VER protein homologs translated from GenBank database entries for *A. nidulans* (local isolate) as a query and the sequences of *A. flavus* isolate AF70(AY510453.1) as a subject

Fig. 5. Sequence comparison of the VER protein homologs translated from GenBank databaseentries for *Aspergillus parasiticus* (local isolate) as a query and the sequences of *A. parasiticus* isolate (gb|AY371490.1) as a subject

replaced by serine). The rest of the substitutions resulted in no change in the amino acid type as it was in the third base of the codon (Fig. 5).

DISCUSSION

Sterigmatocystin, the penultimate precursor to aflatoxin, is produced by a number of non-aflatoxigenic fungi including *A. nidulans*. Brown *et al.*²² characterized a 60 kb DNA region in *A. nidulans* that consists of a cluster of genes

responsible for 25 co-regulated transcripts involved in sterigmatocystin biosynthetic pathway in this fungus.

The sequencing results of *ver-1* gene (conserved region) of the two Egyptian investigated isolates; *A. nidulans* (sterigmatocystin producer) and *A. parasiticus* (AFB & AFG producer), revealed the presence of variation in size (many gabs were identified) while the expected subsequent protein variation was absent as a result of the change being only in the

third position of the codons of some amino acids. This result might be attributed to the fact that ver*l* gene is involved in the biosynthesis of both sterigmatocystin and aflatoxin. Additionally, the common environment of the two isolates (both were isolated from Aswan at Egypt) might play a role. These results are consistent with Kusumoto et al. (1998)³³ who compared part of the nucleotide sequence of the ver-1 homolog in two strains of each of A. oryzae, A. sojae, and A. flavus with two homologs in A. parasiticus. The homologs in A. oryzae and A. sojae (non-aflatoxin-producers) exhibited an extremely high degree (93.8-99.8% for A. oryzae, and 96.0-99.5% for A. sojae) of sequence identity with that of A. flavus and A. parasiticus. No sequence fingerprint was found to distinguish between A. oryzae and A. flavus, or between A. *sojae* and *A. parasiticus*.

Taxonomically, *A. flavus* is highly related to *A. oryzae* as well as *A. parasiticus* to *A. sojae*³⁴ where each two related species represented 90% nucleotide sequence homology. Woloshuk *et al.*³⁵ reported that *afl-2* gene in *A. flavus* and the *apa-2* gene in *A. parasiticus* are homologs, and thus should be both designated as *aflR*. Also, Mokhtar³⁶ reported no DNA and no amino acid variations in the conserved region of *ver-1* gene of two Egyptian *Aspergillus* isolates; *A. flavus* (aflatoxigenic) and *A. oryzae* (non-aflatoxigenic).

Comparing the obtained sequencing result of ver-1 gene generated from the local Egyptian isolate A. nidulans to the published complete sequence obtained from the genebank revealed high identity ranging from 91 to 100% at a query coverage range from 7% to 96%, thus being consistent with the results of Chang et al.³⁷ and Watson et al.³⁸ who reported the presence of sequence variations in the three structural genes nor-1, ver-1, omtA and the regulatory gene aflR generated from different Aspergillus strains (A. tamarii SRRC 99, SRRC 1088; A. oryzae SRRC 2104, SRRC 2103, SRRC 2353, ATCC 14895, ATCC 16507; A. sojae SRRC 1123, ATCC 42251; A. nomius SRRC 362, SRRC 375; A. parasiticus SRRC 134, ATCC 24690, ATCC 36537, ATCC 56774, ATCC 56775; A. niger ATCC 9029) and different levels of DNA relatedness (39-90%).

Moreover, Mokhtar³⁶ matched ver-1 gene sequences of two Egyptian Aspergillus isolates (A. oryzae and A. flavus) with 25 ver-1 gene

J PURE APPL MICROBIO, 6(4), DECEMBER 2012.

sequences of 25 strains belonging to five *Aspergillus* species; *A. oryzae* (11 strains), *A. flavus* (9 strains), *A. parasiticus* (4 strains), *A. sojae* (2 strains) and *A. nomius* (one strain) and reported identity homology results ranging from 91 to 99%.

Regarding the absence of homology between *ver-1* gene generated form *A. nidulans* isolate of the current work and that of any other of either *A. nidulans* or *A. niger*, these results agree with the data of Kozlowski and Stepien³⁹, who suggested that *A. niger* has diverged significantly from the other species. Also, the nature of the investigated fungi and the ecological properties may be involved in this result.

Comparing the sequencing results of *ver-l* genes generated from the local Egyptian isolate *A. parasiticus* of the present work to the published complete sequence obtained from the genebank revealed high range of identities from 94 to 99% at a query coverage range from 16% to 96%, respectively. These results are consistent with those of Chang *et al.*³⁷ and Watson *et al.*³⁸ who reported the presence of sequence variations in the three structural genes *nor-1*, *ver-1*, *omtA* and the regulatory gene *aflR* generated from different *Aspergillus*.

Additionally, Homologs of *aflR*, *from A*. *nomius, A. bombycis, A. parasiticus, A. flavus*, and *A. pseudotamarii* were studied to investigate the molecular basis for variation among aflatoxinproducing taxa in the regulation of aflatoxin production. Variability was found in putative promoter consensus elements and coding region motifs⁴⁰.

In the current study, the sequence of *ver-1* gene of *A. nidulans* local isolate possessed restricted variations only on the level of third base of codon, when it was compared with the most similar aflatoxigenic *A. flavus* AF70 strain (AY510453.1). However, in case of *ver-1* generated from *A. parasiticus* local isolate, variations in two amino acids together with changes in the third base of five codons were detected when compared with the most similar *A. parasitic* strain (gb.AY371490.1). These restricted variations between the two local Egyptian species and the published sequences might be attributed to the short region (171 amino acids for *A. nidulans* and 165 amino acids for *A. parasiticus*) used in the homology and the stability of the

conserved codons involved in the biosynthesis of aflatoxin, these results agree with Kusumoto *et al.*³¹ who reported no sequence fingerprint was found to distinguish between *A. oryzae* and *A. flavus*, or between *A. sojae* and *A. parasiticus*. Also, they reported that the predicted partial amino acid sequences (181 amino acids) of the *ver-1* homologs had at most two amino acid changes relative to *A. parasiticus* SYS-4 ver-1. Also, Mokhtar³⁶ reported only one to two amino acid variations when compared *ver-1* gene generated from *A. oryzae* and *A. flavus* (local isolates) with the most similar aflatoxigenic *A. flavus* AF70 strain (AY510453.1).

Conclusively, a very high degree of homology in the conserved region of *ver-1* gene of the investigated Egyptian isolates was observed where, when compared to other genebank *Aspergillus* sp., only one strain was found to refrain from conservatism by possessing a two-amino acid change. The uniqueness of *Ver-1* gene of *A. nidulans* could be clearly observed for being a mismatch with all *A. nidulans* genebank strains, hence, particularly for *A. nidulans*, further studies on the characterization of the obtained sequences in the current study will be conducted.

ACKNOWLEDGEMENTS

The authors would like to thank The Culture Collection Unit at The Regional Center for Mycology and Biotechnology for providing the fungal isolates investigated and the molecular biology unit of the center for offering work facilities.

REFERENCES

- Cary, J.W, Klich, M.A, Beltz, S.B. Characterization of aflatoxin- producing fungi outside of *Aspergillus* section Flavi. Mycologia, 2005; 97(2): 425-32.
- Kurtezman, C.P, Horn B.W, Hesseltine, C.W). Aspergillus nomius, a new aflatoxin-producing species related to Aspergillus flavus and Aspergillus tamarii. Antonie van Leeuwenhoek , 1987; 53: 147-158.
- Bhatnagar, D., Ullah, A.H.J, Cleveland, T.E. Purification and characterization of a methyltransferase from *Aspeigillus parasiticus* SRRC 163 involved in aflatoxin biosynthetic pathway. *Prep. Biochem.* 1988; 18: 321-349.
- 4. Bhatnagar, D., Cleveland, T.E, Kingston, D.G. Enzymological evidence for separate pathway

for Aflatoxin B1 and B2 biosynthesis. Biochemistry, 1991; **30**: 4343-4350.

- Keller, N.P, Dischinger, H.C, Bhäatnagar, D., Cleveland, T.E, Ullah, A.H.J.. Purification of a methyltransferase active in the aflatoxin biosynthesis pathway. FASEB J., 1991; pp.26-23.
- Cotty, P.J., P. Bayman,, D. S., Egel, and K. S. Elias.. Agriculture, aflatoxins and *Aspergillus*, 1994; Pp. 1-27. *In: The genus* Aspergillus. Eds., K. A. Powell, A. Renwick, and J. F. Peberdy. Plenum Press, New York.
- Goto T, Wicklow D.T, Ito Y., Aflatoxin and cyclopiazonic acid production by sclerotiumproducing Aspergillus tamarii strain. Appl. Environ. Microbiol. 1996; 62: 4036-4038.
- Payne, G.A. Process of contamination by aflatoxin- producing fungi and their impact on crops. In: Sinha KK and Bhatnager D (Eds.), Myctoxins in Agricuiture and Food Safety, Marcel Dekker, Inc. New York, 1998; pp.279-306.
- Klich, M.A, Mullaney, E.J, Daly, C.B, Cary, J.W. Molecular and physiological aspects of aflatoxin and sterigmatocystin biosynthesis by *Aspergillus tamarii* and *A. ochraceoroseus. Appl. Microbiol. Biotechnol.*, 2000; **53**: 605-609.
- Peterson, S.W., Ito, Y., Horn, B.W, Goto, T. Aspergillus bombycis, a new aflatoxigenic species and genetic variation in its sibling species, A. nomius. Mycologia, 2001; 93: 689-703.
- Ito, Y, Peterson, S.W, Wicklow, D.T, Goto, T. Aspergillus pseudotamarii, a new aflatoxinproducing species in Aspergillus Section Flavi. Mycol. Res., 2001; 105: 233-239.
- Cole, R.J, Cox, R.H. Strigmatocystins. In: Cole RJ and Cox RH (Ed.); Handbook of Toxic Fungal Metabolites, New York, Academic Press., 1981; pp. 67-93.
- Barnes, S.E, Dola, T.P, Bennett, J.W, Bhatnager, D. Synthesis of sterigmatocystin on a chemically defined medium by species of *Aspergillus* and *Chaetomium*. Mycopathologia, 1994; 125: 173-178.
- Cleveland, T.E, Bhatnagar, D., Foell, C.J., McCormick, S.P.. Conver- sion of a new metabolite to aflatoxin B2 by Aspregillus parasiticus. Appl. Environ. Microbiol., 1987; 53: 2804-2807.
- Dutton, M.F. Enzymes and aflatoxin biosynthesis. *Microb. Rev.*, 1988; 52: 247-295.
- McGuire, S.M, Brobst, S., Graybill, T.L, Pal, K., Townsend, C.A. Partitioning of tetrahydroand dihydrobisfuran formation in aflatoxin biosynthesis defined by cell free and direct incorporation experiments. J. Am. Chem. Soc.,

1989; 111: 8308-8309.

- Yabe, K., Ando, Y., Hamasaki, T. Biosynthetic relationship among aflatoxin B1, B2, G1, G2. *Appl. Environ. Microbiol.*, 1988; 54: 2101-2106.
- Yabe, K., Ando, Y., Hamasaki, T. Deasturase activity in the branching step between Aflatoxins B1 and G1 and between aflatoxins B2 and G2. *Agric. Biol. Chem.*, 1991a; 55: 1907-1911.
- Yabe, K., Ando, Y., Hamasaki, T. A metabolic grid among versiconal hemiacetal acetate, versiconol acetate, versiconol and versiconal during aflatoxin biosynthesis. J. Gen. Microbiol., 1991b;137: 2415- 2469.
- Yu, J., Bhäatnagar, D., Ehrlich, K.C. (). Aflatoxin biosynthesis. *Rev. Iberoam Micol.*, 2002; 19: 191-200.
- Bhäatnagar, D., Ehrlich, K.C., Cleveland, T.E. Oxidation-reduction reactions in biosynthesis of secondary metabolites. In: Bhatnagar D, Lillehoj EB and Arora DK (Eds.); Handbook of applied mycology: mycotoxins in ecological systems. New York, Marcel Dekker, 1992; 5: 255-286.
- 22. Brown, D.W., Yu, J.H, Kelkar, H.S. (). Twentyfive coregulated tran- scripts define a sterigmatocystin gene cluster in *Aspergillus nidulans. Proc Natl. Acad. Sci.*, 1996; **93**: 1418-1422.
- 23. Yu, J., Chang, P.K, Cary, J.W. Comparative mapping of aflatoxin pathway gene clusters in *Aspergillus parasiticus* and *Aspergillus flavus*. *Appl. Environ. Microbiol.*, 1995; **61**: 2365-2371.
- Skory, C.D, Chang, P.K, Cary, J., Linz, J.E. Isolation and characterization of a gene from *Aspergillus parasiticus* associated with the conversion of versicolorin A to sterigmatocystin in aflatoxin biosynthesis. *Appl. Environ. Microbiol.*, 1992; 58: 3527-3537.
- Ehrlich, K.C., Montalbano, B., Boue, S.M., Bhatnagar, D. An aflatoxin biosynthesis cluster gene encodes a novel oxidase required for conversion of versicolorin A to sterigmatocystin. *Appl. Environ. Microbiol.*, 2005; 71: 8963–8965.
- 26. Henry, K.M., Townsend, C.A. Ordering the reductive and cytoc- hrome P450 oxidative steps in demethylsterigmatocystin formation yields general insights into the biosynthesis of aflatoxin and related fungal metabolites. *J.Am. Chem. Soc.*, 2005; **127**: 3724-3733.
- Liang, S.H., Skory, C.D., Linz ,J.E. Characterization of the function of the ver-1A and ver-1B genes, involved in aflatoxin biosynthesis in Aspergillus parasiticus. Appl. Environ. Microbiol., 1996; 62(12): 4568-75.
- 28. Stephen, F., Altschul, T.L., Madden, A.,

Schäffer, J. Z., Zheng ,Z., Webb, M., and David, J. L. "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", *Nucleic Acids Res.*, 1997; **25**: 3389-3402.

- 29. Geisen, R. A multiplex PCR reaction for the detection of potential aflatoxin and sterigmatocystin producing fungi. *Systematic and Applied Microbiology*, 1996; **19**: 388-392.
- Sambrook, J., Fritsch, E.F, Maniatis, T. Molecular cloning: A laboratory manual, 2nd ed., Cold Spring Laboratory. Cold Spring Harbor, New York. 1989.
- Sanger, F., Nicklen, S., Coulson, A.R. Gene cloning techniques. Proc. Nat. Acad. Sci., 1977; 74: 5463-5467.
- 32. Tabor, S., Richardson, C. Proc. Nat. Acad. Sci. (USA), 1995; **92**: 6639-6343.
- 33. Kusumoto, K.I., Yabe, K., Nogata, Y., Ohta, H. Aspergillus oryzae with and without a homolog of aflatoxin biosynthetic gene ver-1. *Appl Microbiol Biotechnol.*, 1998; 50(1): 98-104.
- Kurtezman, C.P, Smiley, M.J, Robnett ,C.P, Wincklow, D.T. DNA relatedness among wild and domesticated species in the *Aspergillus flavus* group. *Mycologia*, 1986; 78: 955-959.
- Woloshuk, C.P., Foutz, K.R., Brewer, J.F., Bhatnagar, D., Cleveland, T.E, Payne, G.A. Molecular characterization of *aflR*, a regulatory locus for aflatoxin biosynthesis. *Appl. Environ. Microbiol*, 1994; 60: 2408–2414.
- Mokhtar, M. M. Sequencing and homology of ver-1 gene from Egyptian Aspergillus flavus and Aspergillus oryzae. International Journal of Genetics and Molecular Biology, 2009; 1(9), pp. 166-173.
- 37. Chang, P.K, Bhäatnagar, D., Cleveland, T.E., Bennett, J.W. Sequence variability in homologs of the aflatoxin pathway gene *aflR* distinguishing species in *Aspergillus* Section *Flavi. Appl. Environ. Microbiol.*, 1995; **61**: 40-43.
- Watson, A.J., Fuller, L.J., Jeenes, D.J, Archer, D.B. Homologs of aflatoxin biosynthesis genes and sequence of *aflR* in *Aspergillus oryzae* and *Aspergillus sojae*. Appl. Environ. Microbiol., 1999; 65: 307-310.
- Kozlowski, M., Stepien, P.P. Restriction enzyme analysis of mitochondrial DNA of members of the genus *Aspergillus* as an aid in taxonomy. *J. Gen. Microbiol.*, 1982; 128: 471– 476.
- 40. Ehrlich, K.C, Montalbano, B.G., Cotty, P.J. Sequence comparison of *aflR* from different *Aspergillus* species provides evidence for variability in regulation of aflatoxin production. *Fungal Genet. Biol.*, 2003; **60**: 150-155.

1540