Study on Microbial Community Structures in Drinking Water Sludge by PCR-DGGE

Ma Guangxiang¹, Pei Haiyan^{1,2}, Hu Wenrong^{1,2*}, Xu Bing and Feng Sun¹

¹School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, China. ²Shandong Provincial Engineering Centre on Environmental Science and Engineering, Jinan, Shandong, China.

(Received: 15 January 2013; accepted: 23 February 2013)

In order to offer useful information for harmless disposal of drinking water sludge, the bacterial community structures of sludge produced in two different drinking water plants were initially studied by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique. The result of sequencing of DGGE band analysis showed that the microbial community structure of drinking water sludge was complex, various types and a large number of microbes lived in drinking water sludge according to the Shannon-Wiener index of diversity (H) and the specific richness (R). Nine phyla obtained by the similarity analysis of 27 strong bands selected from the DGGE profiles sludge samples as follows: Proteobacteria, Acidobacteria, Fibrobacteres, Chloroflexi, Bacteroidetes, Firmicutes, Cyanobacteria, Verrucomicrobia and Sheathe bacteria. Among them, Proteobacteria contained two classes (Gamma-proteobacteria and Betaproteobacteria) and then three genera (Rhodocyclus, Proteobacterium and Methylothermus) were the most common species. Chloroflexi including three classes (Chloroflexi, Caldilineae and Anaerolineae) and Bacteroidetes (Bacteroidetes and Flavobacteria) were also usual populations. Most of species, with high organic materials degradation activity, were heterotrophic bacteria due to a large number of organic materials contained in drinking water sludge. The present study also demonstrated the comparison of microbial community structure between drinking water sludge and wastewater sludge, Proteobacteria, Bacteroidetes and Chloroflexi were considered as the most common dominant species on phylum level, Differences such as the number of Rhodocyclu in drinking water sludge or Micrococcus in wastewater sludge were obviously shown due to the different treatment process and the inlet water quality.

Key words: Drinking Water, Sludge, PCR-DGGE, Microbial Community Structure, Bacteria.

Drinking-water treatment sludge is a byproduct generated by coagulation with a hydrolysing metal salt such as aluminium sulfate ('alum') or ferric chloride ('ferric') which are used as coagulants to remove colour, turbidity and humic substances (Verrelli *et al.*, 2009; Razali *et al.*, 2007). As a result of this operation, several million tons of clarifier sludge contained suspended solids, colloidal matter and color-causing organics in natural water are produced yearly¹ (Petruzelli *et al.*, 2000) and some organohalogen contaminants, pathogens (bacteria, viruses and protists) and concentrated metals, e.g., aluminum and iron may also live in it (Hall *et al.*, 1989; Rivera *et al.*, 1997; Wu⁻ rzer *et al.*, 1995; Bourgeois *et al.*, 2004).

Concern has gradually risen owing to the urgent demands to reduce waste disposal costs and environmental impacts. The sludge treatment process in place at drinking water treatment plant (DWTP) includes the following stages: sludge gathering and storage, pumping to thickening area, thickening, storage of thickened sludge, pumping to dehydration area, dehydration, atomization and final storage (Wang *et al.*, 2005). Determination of

^{*} To whom all correspondence should be addressed. Tel: +86-531-88392983; Fax: +86-531-88392983; E-mail: peisdu@yahoo.com.cn

microbial community structure is important on drinking water sludge treatment, but the shortage of information is due, in part, to the lack of enough attention for analyzing microbial community structure and diversities in environmental samples. Recently, the PCR- DGGE approach is widely used by most researchers in environment study, such as fermentation, soil or sea (Edenborn *et al.*, 2007; Hamasaki *et al.*, 2007). It could offer a lot of available information for the microbial community structure of many environmental samples and provide a valuable basis for further study on bacteria characteristics.

Culture techniques are depended on by the conventional analysis of microbial communities (Yoshie et al., 2001). However, culture-dependent approaches which need a waste of time and fussy operation are biased by only a fraction of selected species which don't demonstrate the real dominance structure. Different cultureindependent methods to fingerprinting, such as denaturing gradient gel electrophoresis (DGGE; Kocherginskaya et al., 2001; Smit et al., 1997), realtime PCR (Du et al., 2006), fluorescent in situ hybridization (FISH) (Dong et al., 2010), amplified ribosomal DNA restriction analysis (ARDRA) and clone libraries, terminal restriction fragment length polymorphism (T-RFLP) (Gong et al. 2002; Eriksson et al., 2003) are widely used to characterize the microbial communities and to identify individual members based on V3-16SrDNA for ecological studies. The use of DGGE followed by PCRamplification is to assess the diversity of microbial structure and determine the phylogeny of community members by analyzing the sequence of DNA fragments after they are showed from the gel in which bands corresponding to each species of microbe have been separated by DGGE.

So far, to our knowledge, researches on microbial community structure of activated sludge in wastewater treatment plant are numerous. However, there have been few studies on that of drinking water sludge. In this study, the microbial community structure of the drinking water sludge was systematically researched by PCR-DGGE technology and the characteristics of the selected bacteria were mentioned. In addition, the comparison existed between activated sludge in wastewater and drinking-water treatment processes in terms of microbial community structure was demonstrated in order to provide useful information for harmless disposal of sludge produced in drinking water process.

MATERIALS AND METHODS

DNA extraction and purification

The sludge samples collected respectively from the flow tank of two drinking water plants in two different cities were all centrifuged for 10min at 12000r/min within 12hrs and then the total DNA was extracted respectively using Soil DNA Fast Extraction Kit (Spin-column) according to the manufacturer's instructions (Bio Teke, China).

PCR amplification and product detection

Bacterial specific universal primers, 341F with GC-clamp and 534R, were used to amplify the V3 region of 16SrDNA gene, (Muyzer *et al.*, 1993; Xing *et al.*, 2006). PCR amplification was performed in a 50ul reaction mixtures and carried out in an authorized mastercycler (Eppendorf, Germany) according to standard protocols (Choi *et al.*, 2007).

DGGE of composite PCR products (20ul) were applied directly onto a polyacrylamide gel (Nakasaki *et al.*, 2009; Nadarajah *et al.*, 2007) and the electrophoresis was performed at 60°C and 150 V for 280min (Liu *et al.*, 2008).Images were captured using Quantity One 4.3.0 gel analysis software (Bio-Rad, USA) to evaluate the diversity indices of the microbial community calculated from the DGGE band profiles. The Shannon-Wiener index of diversity (H) (Shannon *et al.*, 1963), the the equitability index (E) (Pielou, 1975) and the Dice index (Cs) (Dice, 1945) were used to present the diversity of the bacterial community.

Sequence alignment and phylogenic tree

PCR products were cloned according to the manufacturer's instruction and then sequenced by Sangon Biotech (Shanghai) Co. Ltd. Clone sequences recovered from excised bands were manually compared to the GenBank database to identify the most similar 16SrDNA sequences selected with more than 93% homology taxonomically by using the alignment basic local search tool (BLAST) (Regina *et al.*, 2003) and classified them by Ribosomal Database Project (RDP) (Table 3) in order to investigate the phylogenetic identities. The nucleotide sequences were aligned with the CLUSTAL-X program (Thompson *et al.*, 1997) and the phylogenetic trees were constructed by the neighbor-joining method (Saitou *et al.*, 1987) using MEGA 4.

Nucleotide sequence accession numbers

The sequences obtained in this study are available in the GenBank database under accession numbers: JN936813-JN936838 and JQ012796.

RESULTS AND DISCUSSION

Analysis of DGGE profiles

A total of 27 strong DGGE bands were isolated from the different positions of the gel, some minor bands were not been identified because they could not be excised from the gels due to their low intensities, so bands with a relative intensity of less than 0.58% of the sum of all band intensities were discarded. As shown in Table 1, the indices of H, E and R, reflecting the structural diversity of the bacterial community (Gafan et al., 2005), were calculated on the basis of the number and relative intensities of bands in the gel. The Shannon-Wiener index of diversity (H) ranged from 3.372 to 3.525 and the specific richness (R) (from 34 to 39) were used to calculate the diversity of bacterial communities, they were demonstrated that the bacterial community structures of sludge samples were complex and the species were multitudinous. Equitability index can range from near 0, indicating pronounced dominance, to near 1, indicating complete evenness, i.e. (Pielou, 1975). The analysis of equitability index (E) ranged from 0.956 to 0.9612 was showed an almost consistent distribution of taxa between sludge samples. Higher H and E values were registered in sample C, indicating relative abundances and higher number of species in stale sludge sample of Plant A, compared to the fresh sludge sample.

The similarity (Dice coefficient, 84.23%) between fresh sludge sample of Plant A (Lane A_1) and that of Plant B (Lane B) was very high due to many common species, the same coagulant and technology in treatment process between the two plants might be the main reason for the high similarity of bacterial community structures. The profile of the fresh sludge sample of Plant B (Lane B) had about 78.34% community similarity to the stale sludge sample of Plant B (Lane C), this phenomenon maybe results from the effect of the standing time.

Although total numerical analysis of the DGGE patterns of sludge microbial communities in drinking water showed a few changes, the selected dominant bands identified from DGGE profile were different due to the difference of the water quality. As shown in Table 2 and Figure 1, bands 3, 13, 14, 16 and 26 in the profile of Lane A₁ were found to have strong intensity whose OD value were 4.628, 3.046, 2.976, 2.575, 2.512 respectively, whereas those in Lane B were very faint (1.026, 0.987, 0.884, 1.757, 1.011 relatively) and bands 4, 9, 12, 17 and 18 were abundant in Lane B with OD value 3.994, 3.467, 3.112, 2.504 and 2.911 respectively but lower in Lane A₁. Lane B had stronger intensities bands such as bands 15, 17, 18, 19, 20 and 23 (OD value 2.513, 2.504, 2.911, 2.566, 2.499 and 3.763 respectively) than Lane C, although the intensities of bands 2, 8, 10, 11, 13 and 14 with OD value 5.297, 3.253, 3.704, 2.762, 3.046, 2.976 respectively were much higher in Lane C compared to Lane B in which each relative band was low to 1.898. The results were indicated that the fresh sludge samples of different plants not only contained many common bacterial groups but also a few particular species in which existed respectively, the differences in source water quality such as the concentrations and types of DOC between the two plants might be the main reason for the small differences of bacterial community structures except the same treatment process and added coagulant. As the residence time increased, the species of the sludge bacterial community in the same plant were not much alteration but the quantities were subject to change, some specific species were affected as a result of the dissolved oxygen and the organic materials of the sludge gradually reduced.

Table 1. Structural biodiversity (H), specificrichness (R) and equitability index (E) calculatedfrom the digitized DGGE patterns

	Lane A ₁	Lane B	Lane A ₂	Lane C
Н	3.496	3.375	3.501	3.372
E	0.961	0.957	0.962	0.956
R	38	34	39	34

Lane A₁, A₂: fresh sludge sample of Plant A; Lane B: fresh sludge sample of Plant B; Lane C: stale sludge sample of Plant B

no. no. no. Lane A ₁ 1 Bacteroiders bacterium (EF636477) 1N936813 97 0.667 3 2 Verrucomicrobia bacterium (CU020931) 1N936815 95 0.564 3 Acidobacteria bacterium (CU0229285) 1N936815 95 0.667 3 4 Verrucomicrobia bacterium (HQ003468) 1N936815 97 0.667 3 5 Rhodocyclaceae bacterium (HQ038512) 1N936818 97 1.722 0.687 6 Rhodocyclaceae bacterium (HQ038512) 1N936818 97 1.722 0.687 7 Uncultured Fibrobacterium (HQ386512) 1N936818 97 1.722 0.687 8 Chloroflexi bacterium (HQ386512) 1N93682 99 1.726 0.569 10 Uncultured Fibrobacterium (HQ386512) 1N93682 99 1.726 0.569 11 Uncultured Fibrobacterium (HQ386512) 1N93682 99 1.726 0.569 12 Uncultured Fibrobacterium (HQ3805124) 1N9368		Accession	Similarity	Kela	tive OD value	
1 Bacteroiders bacterium (EF636477) $N936813$ 97 0.667 2 Verrucomicrobia bacterium (CU920031) $N936815$ 95 0.667 3 Acidobacteria bacterium (CU920231) $N936815$ 95 0.667 5 Rhodocyclacae bacterium (HQ003468) $N936815$ 97 0.687 6 Rhodocyclacae bacterium (HQ003468) $N936817$ 97 0.687 7 Uncultured Fibrobacteres bacterium (HQ0336512) $N936819$ 97 0.687 7 Uncultured Fibrobacteres bacterium (HQ0336512) $N936819$ 97 0.687 8 Chloroffexi bacterium (GU42598) $N9368210$ 99 0.569 11 Uncultured Granobacterium (FJ860124) $N936822$ 98 0.726 13 Chloroffexi bacterium (FJ96310) $N936827$ 96 2.126 13 Chloroffexi bacterium (FJ96310) $N936827$ 96 2.128 14 Uncultured Choroffexi bacterium (FJ76434) $N936827$ 96 2.126 15 Bact		no.		Lane A_1	Lane B	Lane C
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	5477)	JN936813	76	0.667	3.598	3.330
3 Acidobacteria bacterium (AM935817) JN936815 95 4.628 4 Verrucomicrobia bacterium (EU29285) JN936815 97 0.687 5 Rhodocyclaceae bacterium (HQ003468) JN936815 97 0.687 6 Rhodocyclaceae bacterium (HQ003468) JN936815 97 1.723 7 Uncultured Fibrobacteres bacterium (HQ385512) JN936819 97 1.723 8 Chloroflexi bacterium (HQ15870) JN936820 95 1.726 9 Chloroflexi bacterium (HQ036512) JN936820 97 1.726 11 Uncultured cyanobacteres bacterium (HQ23051200) JN936822 98 1.726 12 Fibrobacteres bacterium (FJ916310) JN936822 98 2.032 13 Chloroflexi bacterium (FJ916310) JN936825 98 2.016 14 Uncultured Chloroflexi bacterium (FJ916310) JN936825 98 2.016 15 Bacteriateres bacterium (FJ916310) JN936825 98 1.012 14 Uncultured Chloroflexi bacterium (FJ92430) JN936825 98 1.012 15 Bacteriatec bact	J920931)	JN936814	95	0.564	1.898	5.297
4 Verracomicrobia bacterium (EU299285) IN936816 93 0.687 5 Rhodocyclaceae bacterium (HQ003468) IN936817 97 2.167 6 Rhodocyclaceae bacterium (HQ003468) IN9368512) IN936817 97 2.167 7 Uncultured <i>Fibrobacteres</i> bacterium (HQ386512) IN9368512 IN93681 97 1.723 7 Uncultured <i>Fibrobacteres</i> bacterium (HQ386512) IN936821 99 2.1679 9 8 Chlorofferi acoli (GU415870) IN936821 93 0.569 1.726 10 Uncultured bacterium (H2916298) IN936822 98 0.569 1.726 11 Uncultured bacterium (H2916298) IN936822 98 0.569 1.726 11 Uncultured bacterium (H2960124) IN936822 98 0.569 1.726 13 Chlorofferi bacterium (EU283360) IN936822 98 0.569 1.726 14 Uncultured Chlorofferi bacterium (EU283360) IN936822 98 0.569 1.726 15 Bacterium (EU2	35817)	JN936815	95	4.628	1.026	3.792
5 Rhodocyclaceae bacterium (HQ003468) $1N936817$ 97 2.167 7 Uncultured Fibrobacteres bacterium (HQ003468) $1N936818$ 97 1.723 7 Uncultured Fibrobacteres bacterium (HQ386512) $1N936819$ 99 1.679 8 Chloroflexi bacterium (H9162886) 10012796 99 1.679 9 Uncultured bacterium (H9162886) 10936821 98 0.569 11 Uncultured cyanobacterium (H916290) 10936822 98 0.569 12 Fibrobacteres bacterium (DQ501290) $1N936823$ 99 0.569 13 Chloroflexi bacterium (H2016310) $1N936825$ 98 0.569 14 Uncultured Charoflexi bacterium (EU283360) $1N936827$ 96 2.275 15 Bacteridates bacterium (EU283360) $1N936827$ 96 2.275 16 Methylothermus sp. (FM176282) $1N936827$ 96 2.275 16 Methylothermus sp. (FM176282) $1N936827$ 96 2.275 17 A	J299285)	JN936816	93	0.687	3.994	3.012
6 Rhodocyclaceae bacterium (GU472572) 1.723 1.723 7 Uncultured Fibrobacters bacterium (HQ386512) 1.936819 99 1.723 8 Chloroffexi bacterium (HQ386512) 1.936819 99 1.679 9 Excherichia coli (GU415870) 1.0936819 99 1.726 10 Uncultured bacterium (HQ386512) 1.9368223 99 0.559 11 Uncultured cyanobacterium (FN860124) 1.9336823 99 0.559 12 Fibrobacterium (FN860124) 1.9936823 99 0.685 13 Chloroffexi bacterium (FN3021290) 1.9936824 100 3.046 14 Uncultured Chloroffexi bacterium (EU283360) 1.9936825 98 2.128 15 Bacteroidetes bacterium (EU283360) 1.9336825 98 2.128 16 Methylothermus sp. (FM176282) 1.9936826 96 2.128 16 Methylothermus sp. (FM176282) 1.9936826 96 2.128 17 Eubacterium (EV495405) <td< td=""><td>003468)</td><td>JN936817</td><td><i>L</i>6</td><td>2.167</td><td>0.963</td><td>2.990</td></td<>	003468)	JN936817	<i>L</i> 6	2.167	0.963	2.990
7Uncultured Fibrobacteres bacterium (HQ386512)JN936819991.6798Chloroffexi bacterium (FJ916298)JQ012796991.6799Escherichia coli (GU415870)JN036821951.72610Uncultured bacterium (FJ916298)JN036821980.56911Uncultured cyanobacterium (FN860124)JN036822982.03212Fibrobacteres bacterium (FJ916310)JN036822990.66513Chloroffexi bacterium (EJ916310)JN0368241003.04614Uncultured Chloroffexi bacterium (JN379247)JN036825982.07615Bacteroidetes bacterium (EU283360)JN036825962.12816Methylothermus sp. (FM176282)JN036826962.12817Eubacterium (AF95405)JN03368220931.01218Anacoterium (FJ764434)JN036829941.12119Uncultured Flavobacterium (HQ821475)JN036832992.23620Bacteroidetes bacterium (HQ821475)JN036833992.21321Uncultured bacterium (ET764434)JN036833992.21322Uncultured bacterium (HQ821475)JN036833992.21323Methanotrophic proteobacterium (ET587743)JN036835992.21324Uncultured bacterium (EU2434)JN036835992.21323Wethanotrophic proteobacterium (HQ821475)JN036835962.211224Uncultured bacterium (EU2434)J	1472572)	JN936818	<i>L</i> 6	1.723	1.998	2.077
8Chloroflexi bacterium (FJ916298)JQ01279699 2.236 9Escherichia coli (GU415870)JN93682095 1.726 10Uncultured bacterium (AB205866)JN93682198 0.569 11Uncultured cyanobacterium (FN860124)JN93682298 2.032 12Fibrobacters bacterium (DQ501290)JN93682399 0.685 13Chloroflexi bacterium (DQ501290)JN936824100 3.046 14Uncultured <i>cyanobacterium</i> (EU283360)JN93682598 2.976 15Bacteroideres bacterium (EU283360)JN93682696 2.128 16Methylothermus sp. (FM176282)JN93682696 2.128 17Eubacterium (EU283360)JN93682994 1.012 18Anaeroliaere bacterium (ET764434)JN93682994 1.012 19Uncultured Flavobacteriacee bacterium (ET764434)JN93683198 1.016 20Bacteroideres bacterium (EU746709)JN93683199 2.236 21Uncultured bacterium (EU746709)JN93683399 2.213 22Uncultured breat proteobacterium (HM854317)JN93683599 2.213 23Methanotrophic proteobacterium (HM854317)JN93683599 2.213 24Uncultured breat proteobacterium (EU74649)JN93683599 2.213 23Uncultured breat proteobacterium (EU746491)JN93683399 2.213 24Uncultured breat proteobacterium (EU746491)JN93683596	erium (HQ386512)	JN936819	66	1.679	0.602	1.637
9Escherichia coli (GU415870) 10036820 95 1.726 10Uncultured bacterium (AB205886) 10036821 98 0.569 11Uncultured cyanobacterium (FN860124) 10936822 98 2.032 12Fibrobacteres bacterium (DQ501290) 10936823 99 0.685 13Chloroffexi bacterium (EU283360) 100336824 100 3.046 14Uncultured Chloroffexi bacterium (EU283360) 100336825 98 2.976 15Bacteroidetes bacterium (EU283360) 100336825 98 2.016 16Methylothermus sp. (FM176282) 100336826 96 2.128 17Eubacterium (EU283360) 100336826 96 2.128 18Anaerolineae bacterium (EF491509) 100336822 98 1.012 19Uncultured Flavobacterium (HQ821475) 100336832 99 2.016 20Bacteroidetes bacterium (EF491509) 10036833 99 2.236 21Uncultured bacterium (EV746709) 10036833 99 2.236 22Uncultured bacterium (EF587743) 10036833 99 2.213 23Methanotrophic proteobacterium (EF587743) 10036833 99 2.213 24Uncultured beta proteobacterium (EF587743) 10036833 99 2.213 23Uncultured beta proteobacterium (EF587743) 10036833 99 2.213 24Uncultured beta proteobacterium (EV72649) 10036835 96 2.112	(8)	JQ012796	66	2.236	1.121	3.673
10Uncultured bacterium (AB20586) $JN936821$ 98 0.569 11Uncultured cyanobacterium (FN860124) $JN936822$ 98 2.032 12Fibrobacteres bacterium (FJ916310) $JN936822$ 99 0.685 13Chloroflexi bacterium (DQ501290) $JN936822$ 99 0.685 14Uncultured Chloroflexi bacterium (JN379247) $JN936822$ 98 2.976 15Bacteroidetes bacterium (EU283360) $JN936825$ 98 2.976 16Methylothermus sp. (FM176282) $JN936826$ 96 2.128 17Eubacterium (AF495405) $JN936822$ 96 2.128 18Anaerolineae bacterium (FJ764434) $JN936822$ 96 2.106 19Uncultured Flavobacteriaceae bacterium (FJ764434) $JN936832$ 99 2.016 20Bacteroidetes bacterium (EU746709) $JN936833$ 99 2.216 21Uncultured bacterium (EU746709) $JN936833$ 99 2.213 22Uncultured bacterium (EU746709) $JN936833$ 99 2.213 23Methanotrophic proteobacterium (H854317) $JN936833$ 99 2.213 24Uncultured beta proteobacterium (EU472649) $JN936835$ 96 2.112 25Uncultured bran proteobacterium (GU472649) $JN936835$ 96 2.112		JN936820	95	1.726	3.467	3.253
11Uncultured cyanobacterium (FN860124) $JN936822$ 98 2.032 12Fibrobacteres bacterium (DQ501290) $JN936823$ 99 0.685 13Chloroflexi bacterium (DQ501290) $JN936823$ 99 0.685 14Uncultured Chloroflexi bacterium (JN379247) $JN936825$ 98 2.976 15Bacteroidetes bacterium (EU283360) $JN936825$ 98 2.976 16Methylothermus sp. (FM176282) $JN936826$ 96 2.128 17Eubacterium (AF495405) $JN936827$ 96 2.575 18Anaerolineae bacterium (EU283360) $JN936829$ 94 1.012 19Uncultured Flavobacteriaceae bacterium (FJ764434) $JN936829$ 94 1.121 20Bacteroidetes bacterium (EU746709) $JN9368330$ 93 2.016 21Uncultured bacterium (EU746709) $JN936833$ 99 2.236 22Uncultured bacterium (EU746709) $JN936833$ 99 2.2136 23Methanotrophic proteobacterium (EN746709) $JN936833$ 99 2.213 24Uncultured beta proteobacterium (EU746709) $JN936833$ 99 2.213 23Uncultured beta proteobacterium (EU746709) $JN936833$ 99 2.213 24Uncultured beta proteobacterium (EU746709) $JN936833$ 99 2.213 25Uncultured beta proteobacterium (EU7469) $JN936833$ 99 2.212 25Uncultured beta proteobacterium (EU72649) $JN936835$ 96 2.212	86)	JN936821	98	0.569	0.664	3.704
12Fibrobacteres bacterium (DQ501290) $JN936823$ 99 0.685 13Chloroflexi bacterium (FJ916310) $JN936824$ 100 3.046 14Uncultured Chloroflexi bacterium (BU283360) $JN936825$ 98 2.976 15Bacteroidetes bacterium (EU283360) $JN936825$ 98 2.976 16Methylothermus sp. (FM176282) $JN936826$ 96 2.128 17Eubacterium (AF495405) $JN936827$ 96 2.575 18Anaerolineae bacterium (EF491509) $JN936829$ 94 1.012 19Uncultured Flavobacteriae bacterium (HQ821475) $JN936830$ 93 2.016 20Bacteroidetes bacterium (HQ821475) $JN936833$ 99 2.236 21Uncultured bacterium (EV46709) $JN936833$ 99 2.236 22Uncultured bacterium (HM854117) $JN936833$ 99 2.236 23Methanotrophic proteobacterium (EF587743) $JN936833$ 99 2.213 24Uncultured beta proteobacterium (GU472649) $JN936835$ 98 2.213 25Uncultured proteobacterium (GU472649) $JN936835$ 96 1.152	N860124)	JN936822	98	2.032	0.896	2.762
13 $Chloroflexi$ bacterium (FJ916310) $JN936824$ 100 3.046 14Uncultured <i>Chloroflexi</i> bacterium (JN379247) $JN936825$ 98 2.976 15 <i>Bacteroidetes</i> bacterium (EU283360) $JN936826$ 96 2.128 16 <i>Methylothermus</i> sp. (FM176282) $JN936827$ 96 2.128 17 <i>Eubacterium</i> (AF495405) $JN936827$ 96 2.575 18 <i>Anaerolineae</i> bacterium (EF491509) $JN936829$ 94 1.012 19Uncultured <i>Flavobacteriae</i> bacterium (FJ764434) $JN936830$ 93 1.012 20 <i>Bacteroidetes</i> bacterium (HQ821475) $JN936833$ 94 1.121 21Uncultured bacterium (EV4709) $JN936833$ 93 2.016 22Uncultured bacterium (EF587743) $JN936833$ 99 2.236 23 <i>Methanotrophic proteobacterium</i> (HM854317) $JN936833$ 99 2.236 24Uncultured beta proteobacterium (EV4649) $JN936833$ 99 2.213 25Uncultured beta proteobacterium (GU472649) $JN936835$ 96 1.152	01290)	JN936823	66	0.685	3.112	3.294
14Uncultured Chloroflexi bacterium (JN379247)JN93682598 2.976 15Bacteroidetes bacterium (EU283360)JN93682696 2.128 16Methylothermus sp. (FM176282)JN93682796 2.128 17Eubacterium (AF495405)JN93682898 1.012 18Anaerolineae bacterium (EF491509)JN93682994 1.121 19Uncultured Flavobacterium (EF491509)JN93683093 2.016 20Bacteroidetes bacterium (HQ821475)JN93683198 1.012 21Uncultured bacterium (HQ821475)JN93683393 2.016 22Uncultured bacterium (EF371431)JN93683393 2.016 23Methanotrophic proteobacterium (HM854191)JN93683399 2.236 24Uncultured beta proteobacterium (EF587743)JN93683598 2.412 25Uncultured beta proteobacterium (GU472649)JN93683596 1.152	(0)	JN936824	100	3.046	0.987	2.745
15Bacteroidetes bacterium (EU283360) $JN936826$ 96 2.128 16Methylothermus sp. (FM176282) $JN936827$ 96 2.575 17Eubacterium (AF495405) $JN936827$ 96 2.575 18Anaerolineae bacterium (EF491509) $JN936829$ 94 1.012 19Uncultured Flavobacteriaceae bacterium (FJ764434) $JN936832$ 94 1.121 20Bacteroidetes bacterium (HQ821475) $JN936833$ 93 2.016 21Uncultured bacterium (HQ821475) $JN936833$ 93 2.016 22Uncultured bacterium (EV746709) $JN936833$ 95 0.853 23Methanotrophic proteobacterium (EF587743) $JN936833$ 99 2.236 24Uncultured beta proteobacterium (EH587743) $JN936833$ 99 2.213 25Uncultured proteobacterium (GU472649) $JN936835$ 96 1.152	um (JN379247)	JN936825	98	2.976	0.884	2.258
16 Methylothermus sp. (FM176282) JN936827 96 2.575 17 Eubacterium (AF495405) JN936828 98 1.012 18 Anaerolineae bacterium (EF491509) JN936829 94 1.121 19 Uncultured Flavobacteriaceae bacterium (FJ764434) JN936830 93 2.016 20 Bacteroideres bacterium (HQ821475) JN936831 98 1.016 21 Uncultured bacterium (HQ821475) JN936831 98 1.016 22 Uncultured bacterium (EU746709) JN936833 99 2.236 23 Methanotrophic proteobacterium (EF587743) JN936833 99 2.236 24 Uncultured beta proteobacterium (GU472649) JN936835 98 2.213 25 Uncultured proteobacterium (GU472649) JN936836 96 1.152	3360)	JN936826	96	2.128	2.513	0.898
17 Eubacterium (AF495405) JN936828 98 1.012 18 Anaerolineae bacterium (EF491509) JN936829 94 1.121 19 Uncultured Flavobacteriaceae bacterium (FJ764434) JN936831 93 2.016 20 Bacteroidetes bacterium (HQ821475) JN936831 93 2.016 21 Uncultured bacterium (EU746709) JN936831 98 1.016 22 Uncultured bacterium (EU746709) JN936833 99 2.236 23 Methanotrophic proteobacterium (EF587743) JN936833 99 2.2356 24 Uncultured beta proteobacterium (GU472649) JN936835 98 2.213 25 Uncultured proteobacterium (GU472649) JN936836 96 1.152	2)	JN936827	96	2.575	1.757	1.738
18 Anaerolineae bacterium (EF491509) JN936829 94 1.121 19 Uncultured Flavobacteriaceae bacterium (FJ764434) JN936830 93 2.016 20 Bacteroidetes bacterium (HQ821475) JN936831 98 1.016 21 Uncultured Flavobacterium (HQ821475) JN936831 98 1.016 21 Uncultured bacterium (EU746709) JN936833 95 0.853 22 Uncultured bacterium (EU746709) JN936833 99 2.236 23 Methanotrophic proteobacterium (EF587743) JN936833 99 2.236 24 Uncultured beta proteobacterium (GU472649) JN936835 98 2.213 25 Uncultured proteobacterium (GU472649) JN936836 96 1.152		JN936828	98	1.012	2.504	0.967
19 Uncultured Flavobacteriaceae bacterium (FJ764434) JN936830 93 2.016 20 Bacteroidetes bacterium (HQ821475) JN936831 98 1.016 21 Uncultured bacterium (EU74609) JN936832 95 0.853 22 Uncultured bacterium (EU746709) JN936832 95 0.853 23 Methanotrophic proteobacterium (EF587743) JN936833 99 2.236 23 Methanotrophic proteobacterium (HM854317) JN936833 96 2.412 24 Uncultured beta proteobacterium (GU472649) JN936835 98 2.213 25 Uncultured proteobacterium (GU472649) JN936836 96 1.152	[509]	JN936829	94	1.121	2.911	0.983
20 Bacteroidetes bacterium (HQ821475) JN936831 98 1.016 21 Uncultured bacterium (EU746709) JN936832 95 0.853 22 Uncultured Crenothrix sp. (DQ984191) JN936833 99 2.236 23 Methanotrophic proteobacterium (EF587743) JN936833 99 2.236 24 Uncultured beta proteobacterium (HM854317) JN936835 98 2.412 25 Uncultured proteobacterium (GU472649) JN936835 96 1.152	bacterium (FJ764434	JN936830	93	2.016	2.566	0.856
21 Uncultured bacterium (EU746709) JN936832 95 0.853 22 Uncultured Crenothrix sp. (DQ984191) JN936833 99 2.236 23 Methanotrophic proteobacterium (EF587743) JN936833 99 2.412 24 Uncultured beta proteobacterium (HM854317) JN936835 98 2.412 25 Uncultured proteobacterium (GU472649) JN936835 96 1.152	(1475)	JN936831	98	1.016	2.499	0.868
22 Uncultured <i>Crenothrix sp.</i> (DQ984191) JN936833 99 2.236 23 <i>Methanotrophic proteobacterium</i> (EF587743) JN936834 96 2.412 24 Uncultured <i>beta proteobacterium</i> (HM854317) JN936835 98 2.213 25 Uncultured <i>proteobacterium</i> (GU472649) JN936835 96 1.152	(60,	JN936832	95	0.853	2.426	0.583
23 Methanotrophic proteobacterium (EF587743) JN936834 96 2.412 24 Uncultured beta proteobacterium (HM854317) JN936835 98 2.213 25 Uncultured proteobacterium (GU472649) JN936835 96 1.152	(161191)	JN936833	66	2.236	2.527	1.197
24 Uncultured beta proteobacterium (HM854317) JN936835 98 2.213 25 Uncultured proteobacterium (GU472649) JN936836 96 1.152	m (EF587743)	JN936834	96	2.412	3.763	2.146
25 Uncultured <i>proteobacterium</i> (GU472649) JN936836 96 1.152	um (HM854317)	JN936835	98	2.213	3.312	2.361
	JU472649)	JN936836	96	1.152	2.677	1.048
26 <i>Acidobacteria</i> bacterium (GU257774) JN936837 97 2.512	57774)	JN936837	<i>L</i> 6	2.512	1.011	2.267
27 <i>Caldilineaceae</i> bacterium (FM176936) JN936838 93 2.476	(76936)	JN936838	93	2.476	0.874	0.963

Table 2. Similarity of sequences of selected DGGE bands, as determined by BLAST nucleotide search

J PURE APPL MICROBIO, 7(1), March 2013.

470

GUANGXIANG et al.: STUDY ON MICROBIAL COMMUNITY STRUCTURES

Fig. 1. DGGE band profiles of V3 fragments of 16SrDNA amplified using the total genomic DNA extracted from sludge of drinking water. Lane A_1 , A_2 : fresh sludge sample of Plant A; Lane B: fresh sludge sample of Plant B; Lane C: stale sludge sample of Plant B

Sequencing of DGGE bands and phylogenetic analysis

A neighbor-joining phylogenetic tree was constructed to visualize the relationships between the sequences. The species of the obtained sequences in DGGE profiles were determined by comparing the closest sequences with those in the National Center for Biotechnology Information (NCBI) database (Liu *et al.*, 2011), revealing that the average sequence similarity to the highest matches was above 93% for the selected DGGE bands (Table 2).As a result of phylogenetic analysis (Figure 2 and Table 3), all the sequences could be divided in 9 phyla as follows: '!*Proteobacteria* (eg. bands 5, 6, 9, 16, 23, 24, 25); a! Acidobacteria (eg. bands 3, 26); b! Fibrobacteres (eg. bands 7, 12); c! Chloroflexi (eg. bands 8, 13, 14, 18, 27); d! Bacteroidetes (eg. bands 1, 15, 19, 20); e! Firmicutes (eg. band 17); f! Cyanobacteria (eg. band 11); g! Sheathe bacteria (eg. band 22); h! Verrucomicrobia (eg. bands 2, 4). Proteobacteria

DGGE bands 16, 23, 24, 25 had the same nearest phylogenetic neighbor Proteobacterium and similarities were 96%, 96%, 98% and 96% respectively, band 9 was more similar to Escherichia coli (GU415870, 95%) which was the most common species in the drinking water, and these five bands were distinctly related to species from the genus Gamma-proteobacteria, these populations were all gram-negative bacilli and had been considered to be related to phosphate removal (Kavanaugh et al., 1994), most of them which enjoyed living in intestinal tract were identified as pathogens. Bands 5 and 6 showed the highest nucleotide similarities to the family of Rhodocyclaceae bacterium, which belonged to *Beta-proteobacteria* with the same sequence homologies (97%), Bacteria from the Betaproteobacteria subclass had already been observed by FISH to be dominant in activated sludge communities (Manz et al., 1994). Given their numerical dominance, it is likely that representatives of this group of the bacterium played important roles in aspects of sludge such as decomposition of organic materials, removal of nutrients, and formation of floc structure.

Bacteroidetes

Populations related to Sphingobacteria represented bands 1, 15 and 20 which showed nucleotide similarities from 96% to 98% respectively, band 1 was more similar to Bacteroidetes bacterium (EF636477) which was isolated from the bacterial community of excess activated sludge during heat-treatment (Yan et al., 2008), band 15 (similarities with EU283360 which was selected in activated sludge from a consecutively aerated submerged membrane bioreactor treating domestic wastewater) (Du et al., 2008) formed a common lineage to the same taxon; band 19 showed 93% (FJ764434, NCBI) similarity to *Flavobacteriaceae* bacteriumÿboth Sphingobacteria and Flavobacterium were related to Bacteroidetes which were always detected in aquatic environment and some of them were

J PURE APPL MICROBIO, 7(1), March 2013.

	Table 3. C	lassification of species in	drinking water sludge sa	ample	
Phylum	Class	Order	Family	Genus	Band No. ^a
Bacteroidetes	Sphingobacteria Flavobacteria	Sphingobacteriales Flavobacteria	unclassified Flavobacteriaceae	unclassified Flavobacterium	1, 15, 20 19
Proteobacteria	Betaproteobacteria Gammaproteobacteria Gammaproteobacteria	Rhodocyclales Methylococcales Enterobacteriales	Rhodocyclaceae Methylococcaceae Enterobacteriaceae	Rhodocyclus Methylothermus Escherichia coli	5, 6, 16, 23, 24, 25 9
Chloroflexi	Chloroftexi Caldilineae Anaerolineae	Chloroflexales Caldilineales Anaerolineales	Chloroflexaceae Caldilineaceae Anaerolineaceae	unclassified <i>Caldilinea</i> unclassified	8, 13, 14 27 18
Acidobacteria	Acidobacteria	unclassified	unclassified	unclassified	3, 26
Verrucomicrobia	Verrucomicrobiae	Verrucomicrobiales	Verrucomicrobiaceae	Verrucomicrobium	2, 4
Fibrobacteres	Fibrobacteres	unclassified	unclassified	unclassified	7, 12
Cyanobacteria	Cyanobacteria	Chroococcales		Cyanobacterium	11
Firmicutes	Clostridia	Clostridiales	Eubacteriaceae	Eubacterium	10, 17
Others				Crenothrix	22

a: the number was corresponded to the bands marked in Figure 1.

GUANGXIANG et al.: STUDY ON MICROBIAL COMMUNITY STRUCTURES

pathogen. The phylum *Bacteroides* is well-known for comprising some of the bacteria present in anaerobic digesters, and its main role in the fermentation system is to break down macromolecules such as cellulose, protein, fiber, starch and chitin (Ponpium *et al.*, 2000).

Chloroflexi

The sequences of band 8, 13 and 14 formed a coherent cluster related to the class of Chloroflexi with the higher sequence homologies (99%, 100% and 98% respectively), band 18 was more similar to Anaerolineae bacterium (EF491509, similarity 94%) and band 27 showed 93% (FM176936) sequence similarity to Caldilineaceae bacterium, all of the five bands had closer relationships with the phylum of Chloroflexi which was formerly known as green non-sulfur bacteria and has been recognized as a typical bacterial cluster containing a number of diverse environmental clones with only a few cultured representati-ves (Kragelund et al., 2007). This group of bacterium was facultative anaerobic and gram-negative bacteria and contained a number of diverse environmental clones retrieved from various wastewater treatment plants. They were predominant bacterium which could obtain ene--rgy for their growth though degrading carbohydrates and cellular materials in activated sludge granules from a high-temperature (55!) up-

flow anaerobic sludge blanket (UASB) used to treat high-strength organic wastewater (Yamada *et al.*, 2005).

Cyanophyta

The sequence of band 11 was related to cyanobacterium (FN860124, similarity 98%) which was widespread in soil and aquatic ecosystems, this group of bacteria, possessed dinitrogen-fixing capabilities and microalgae, was known to influence the development or decline of algal blooms which indicated water quality deterioration and might pose a serious threat to animal and human health as several cyanobacteria could produce a variety of very potent toxins (Soares et al., 2009), therefore, cyanobacteria had attracted much attention because they had been frequently recognized as a problematic constituent of water bloom on the surface of lakes/ponds, which might affect the other living creatures by excreting poisonous metabolites. In addition, previous study indicated that cyanobacteria had been considered

useful for fixing atmospheric nitrogen into ammonia-containing substances, thereby serving as a source of nitrogen supply for aquatic microorganisms (Hori *et al.*, 2002).

Acidobacteria

Species related to *Acidobacteria* bacterium showed band 3 which represented 95% homologies and band 26 showed 97% similarity to GU257774 mentioned from membrane biofilms in a submerged polyviny chloride membrane bioreactor (Xia *et al.*, 2010). This group of bacteria which is known as a degrader with high organic materials degradation activity involved in pollutant degradation suggested the importance of such communities for drinkingwater treatment.

Other Populations

Bands 7 and 12, with the same sequence homologies (similarity 99%), were related to *Fibrobacteres* bacterium which were gram-

J PURE APPL MICROBIO, 7(1), March 2013.

negative bacterium and could resolve cellulose. Band 2 (CU920931, similarity 95%) and band 4 (EU299285, similarity 93%) (Jangid et al., 2010) formed a lineage with Verrucomicrobia bacterium which mainly lived in soil, water and human excreta, therefore, they probably belonged to one species. Band 22 and GU257774 (similarity 97%) formed a common lineage to the same genus of *Crenothrix* which was belonged to Sheathe bacteria and likely to lived in flow of fresh water which contained rich organic. In addition, both bands 10 and 21 had high similarities (98% and 95%) to reference strains found in the NCBI database but were uncultured, band 10 was more to band 17 which was belonged to Eubacterium (similarity 98%) according to the phylogenetic tree, so they may formed a coherent cluster to Firmicutes which were weak and could not resist strong shear imposed on them, unlike Beta-proteobacteria or Gamma-proteobacteria (Larsen et al., 2008), but band 21 were difficult to be classified (Figure 2). All the clones clustered with various sequences in the National Center for Biotechnology Information (NCBI) database retrieved from activated sludge, lake, water, soil, contaminated environments, and so on.

The differences of microbial community structure in different drinking water sludge

According to Table 4, the common predominating phyla in different drinking water sludge included Proteobacteria, Bacteroidetes and *Chloroflexi*, which were also common species in wastewater treatment systems, but certain populations were specific, such as Acidobacteria in Lane A, and Verrucomicrobia in Lane B. As shown in Figure 1 and Table 3, the bacterial community structures of fresh sludge samples in different plants (between Lane A, and Lane B) were similar and a number of common species such as Sphingobacteria (band 15), Eubacterium (band 17), Anaerolineae (band 18), Methylococcaceae (bands 23, 24 and 25) were lived in, but the quantity of them had more or less different. For example, the quantity of band 15 in Lane A1 and Lane B was nearly the same with the OD value 2.128, 2.513 respectively, the OD value of band 18 in Lane A, was 1.121 but it was much higher in Lane B (2.911). A few species were also particular for one of them due to the standing time and the water quality. For Lane A₁, Chloroflexaceae (bands 13 and 14) and Acidobacteria (band 3) were the prominent species, but more numbers of *Sphingobacteria* (band 1) *Verrucomicrobiaceae* (band 4) and *Firmicutes* (band 12) were existed in Lane B. Differences in raw water quality are likely to be the reason for the differences in microbial community structure of different plant sludge observed in the present study.

Compared to Lane B, Lane C also had the same species (eg. *Bacteroidetes*, *Proteobacteria* and so on), but *Chloroflexaceae* (bands 8, 13, 14) and *Verrucomicrobia* (band 2) were also abundant populations attributed to the different place times in the same plant. This effect on bacterial community structure can be explained by the dissolved oxygen and the organic materials of the sludge gradually reduced as the residence time increased.

The comparison of microbial community structure between drinking water sludge and wastewater sludge

Compared to the microorganism composing of activated sludge in waste water treatment plants, Proteobacteria, Bacteroidetes and Chloroflexi were the most common abundant populations on phylum level and other species such as Verrucomicrobia, Firmicutes and Acidobacteria might become dominating ones in certain special environments (Hu et al., 2012). Furthermore, as shown in Table 5, many differences were existed between drinking water sludge and wastewater sludge, for example, the number of Bacteroides, Rhodocyclus, Cyanobacterium and Chloroflexus were seen as the abundant species in drinking water sludge, but in activated sludge of waste water, they were less in certain special wastewater systems and Zoogloea, Comamonas, Alcaligenes and Micrococcus were counted as the prominent species in it according to the large number of their individuals. In addition, there were also some common species such as Flavobacterium, Proteobacterium, Escherichia coli and so on between drinking water sludge and wastewater sludge (Moura et al., 2009). However, the bacterial community structure of the sewage sludge treatments differed from that of the drinking water treatments. This effect on bacterial community structure can be explained by the different treatment process and the inflow water quality such as the concentrations and types of DOC and heavy metals, the concentrations of the nitrogen or

	Lane A ₁	Lane B
Special abundant bands	Acidobacteria	Verrucomicrobi, Fibrobactere, Firmicutes
Common abundant bands	Bacteroidetes , Proteobacteria, Chlorofi	lexi

Table 4. The differences of microbial community structures between Plant A and B

Lane A1: fresh sludge sample of Plant A; Lane B: fresh sludge sample of Plant B

 Table 5. Comparison of sludge composition between drinking water treatment plants and wastewater treatment plants

Types of sludge	Special abundant species	Common abundant species	
Drinking water sludge	Bacteroides, Rhodocyclus,	Flavobacterium,	
0 0	Cyanobacterium, Chloroflexus	Proteobacterium, Escherichia coli and so on.	
Wastewater sludge	Zoogloea, Comamonas, Alcaligenes, Micrococcus		

phosphorus compounds and the DO concentrations in the water.

ACKNOWLEDGEMENTS

This work is supported by the International Science & Technology Cooperation Program of China (2010DFA91150), the International Cooperation Research of Shandong Province (2008GJHZ20601), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry ([2009]1590). The authors thank Dr. Findlay Nicol for revising the English in the manuscript.

REFERENCES

- Bohus V, To'th EM, Sze'kely AJ, Makk J, Krisztia'n B, Patek GB, Schunk JN, Ma' rialigeti KI., Microbiological investigation of an industrial ultra pure supply water plant using cultivationbased and cultivation-independent methods. *Ira. J. Environ. Healt.* 2010; **3**(6): 477-484.
- Bourgeois JC, Walsh ME, Gagnon GA, Comparison of process option for treatment of water treatment residuals streams. *Ira. J. Environ. Healt.* 2004; 3(6): 477-484.
- Choi JH, Lee SH, Fukushi K, Yamamoto K., Comparison of sludge characteristics and PCR– DGGE based microbial diversity of nanofiltration and microfiltration membrane bioreactors. Chemosphere. 2007; 67: 1543-1550.
- 4. Dice LR., Measures of the amount of ecological

association between species. *Ecology*. 1945; **26**: 297-302.

- Du C, Wu ZB, Xiao ER, Zhou QH, Cheng SP, Liang W, He F., Bacterial diversity in activated sludge from a consecutively aerated submerged membrane bioreactor treating domestic wastewater. J. Environ. Sci. 2008; 20: 1210-1217.
- 6. Du H, Jiao NZ, Hu YH, Zeng YH., Real-time PCR for quantification of aerobic anoxygenic phototrophic bacteria based on pufM gene in marine environment. *J. Exp. Mar. Biol. Ecol.* 2006; **329**(1): 113-121.
- 7. Edenborn SL, Sexstone AJ., DGGE Fingerprinting of culturable soil bacterial communities complements culture-independent analyses. *Soil Biol. Biochem.* 2007; **39**(7): 1570-1579.
- Eriksson M, Sodersten E, Yu Z, Dalhammar G, Mohn WW., Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditionsin enrichment cultures from northern soils. *Appl. Environ. Microbiol.* 2003; 69(1): 275-284.
- Gafan GP, Lucas VS, Roberts GJ, Petrie A, Wilson M, Spratt DA., Statistical analyses of complex Denaturing Gradient Gel Electrophoresis profiles. J. Clin. Microbiol. 2005; 43(8): 3971-3978.
- Gong J, Forster RJ, Yu H, Chambers JR, Wheatcroft R, Sabour PM, Chen S., Molecular analysis of bacterial populations in the ileum of broiler chickens and comparison with bacteria in the cecum. *FEMS Microbiol. Ecol.* 2002; 41(3): 171-179.

J PURE APPL MICROBIO, 7(1), March 2013.

- Hall WS, Hall JR., Toxicity of alum sludge to Ceriodaphnia dubia and Pimephales promelas. *B. Environ. Contam. Tox.* 1989; 42: 791-798.
- 12. Hamasaki K, Taniguchi A, Tada Y, Long RA, Azam F., Actively growing bacteria in the inland sea of Japan, identified by combined bromide oxyuridine immuno capture and Denaturing *Gradient Gel Electrophoresis. Appl. Envir. Microbiol.* 2007; **73**(9): 278-298.
- 13. Hori K, Ishii S, Ikeda G, Okamoto J, Tanji Y, Weeraphasphong C, Unno H., Behavior of filamentous cyanobacterium *Anabaena* spp. in water column and its cellular characteristics. *Biochem. Eng. J.* 2002; **10**: 217-225.
- Hu M, Wang XH, Wen XH, Xia Y., Microbial community structures in different wastewater treatment plants as revealed by 454pyrosequencing analysis. *Bioresource Technol.* 2012; **117**: 72-79.
- Jangid K, Williams MA, Franzluebbers AJ, Blair JM, Coleman DC, Whitman WB., Development of soil microbial communities during tallgrass prairie restoration. *Soil. Biol. Biochem.* 2010; 42: 302-312.
- Kavanaugh RG, Randall CW., Bacterial populations in a biological nutrient removal plant. *Water Sci. Technol.* 1994; 29(7): 25-34.
- Kocherginskaya SA, Aminov RI, White BA., Analysis of the rumen bacterial diversity under two different diet conditions using denaturing gradient gel electrophoresis, random sequencing, and statistical ecology approaches. *Anaerobe*, 2001; 7(3): 119-134.
- Kragelund C, Levantesi C, Borger A, Thelen K, Eikelboom D, Tandoi V, Kong Y, Krooneman J, Rossetti S, Thomsen TR, Nielsen PH., Identity, abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants. *FEMS Microbiol. Ecol.* 2007; 59: 671-682.
- Larsen P, Nielsen JL, Svendsen TC, Nielsen PH Adhesion characteristics of nitrifying bacteria in activated sludge. *Water Res.* 2008; 42(10– 11): 2814-2826.
- Liu M, Zhu KL, Li HB., Bacterial Community Composition of the Yellow Sea Cold Water Mass Studied by PCR-Denaturing Gradient Gel Electrophoresis. *Environ. Sci. Technol.* 2008; 29: 1082-1091.
- 21. Liu XC, Wu CQ, Yang M, Li HY., Application of polymerase chain reaction -denaturing gradient gel electrophoresis (PCR-DGGE) to the analysis of changes of microbial ecological communities in activated sludge systems. *Acta Ecol. Sin.* 2005; **25**(4): 842-847.
- 22. Liu ZG, Wang YP, He N, Huang JL, Zhu K,

J PURE APPL MICROBIO, 7(1), March 2013.

Shao WY, Wang HT, Yuan WL, Li QB., Optimization of polyhydroxybutyrate (PHB) production by excess activated sludge and microbial community analysis. *J. Hazard. Mate.* 2011; **185**: 5-16.

- Manz W, Wagner M, Amann R., In situ characterization of the microbial consortia active in two wastewater treatment plants. *Water Res.* 1994; 28: 1715-1723.
- Moura A, Taca^o M, Henriques I, Dias J, Ferreira P, Correia A., Characterization of bacterial diversity in two aerated lagoons of a wastewater treatment plant using PCR–DGGE analysis. *Microbiol. Res.* 2009; 164: 560-569.
- Muyzer G, Waal D., Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction2amplified genes coding for 16SrRNA. *Appl. Environ. Microbiol.* 1993; **59**(3): 695-700.
- Nadarajah N, Allen DG, Fulthorpe RR., Effects of transient temperature conditions on the divergence of activated sludge bacterial community structure and function. *Water Res.* 2007; 41: 2563-2571.
- Nakasaki K, Tran LTH, Idemoto Y, Michiharu A, Rollon, AP., Comparison of organic matter degradation and microbial community during thermophilic composting of two different types of anaerobic sludge. *Bioresource Technol.* 2009; 100: 676-682.
- Petruzelli D, Volpe A, Limoni N, Passivo R., Coagulants removal and recovery from water clarifier sludge. *Water Res.* 2000; 34: 2177-2182.
- 29. Pielou EC., Ecological diversity. New York Wiley, USA. 1975; 165.
- Ponpium P, Ratanakhanokchai K, Kyu KL., Isolation and properties of a b cellulosome-type multienzyme complex of the thermophilic Bacteroides sp. strain P-1. <u>Enzyme Microb.l</u> <u>Tech.</u> 2000; 26: 459-465.
- Razali M, Zhao YQ, Bruen M., Effectiveness of a drinking-water treatment sludge in removing different phosphorus species from aqueous solution. *Sep. Purif. Technol.* 2007; 55: 300-306.
- 32. Regina K, Silva A, Salles JF, Seldin L, Elsas JD, pplication of a novel Paenibacillus-specific PCR-DGGE method and sequence analysis to assess the diversity of Paenibacillus spp. in the maize rhizosphere. J. Microbiol. Meth. 2003; 54: 213-231.
- 33. Rivera J, Eljarrat E, Espadaler I, Martrat MG, Caixach J., Determination of PCDF/PCDD in sludges from a drinking water treatment plant influences of chlorination treatment. *Chemosphere*. 1997; 34: 989-997.

- Saitou N, Nei M., The neighbor-joining method: A new method for reconstructing phylogenetic trees. *Mol. Biol. Evol.* 1987; 4: 406-425.
- 35. Soares MCS, Lürling M, Panosso R, Huszar Z., Effects of the cyanobacterium Cylindrospermopsis raciborskii on feeding and life-history characteristics of the grazer Daphnia magna. *Ecotox. Environ. Safe.* 2009; **72**: 118-1189.
- Shannon CE, Weaver W., The Mathematical Theory of Communication. University of Illinois Press, Urbana and Chicago, USA, 1963.
- Smit E, Leeflang P, Wernars K., Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. *FEMS Microbiol. Ecol.* 1997; 23: 249-261.
- Stamper DM, Walch M, Jacobs RN., Bacterial population changes in a membrane bioreactor for graywater treatment monitored by denaturing gradient gel electrophoretic analysis of 16S rRNA gene fragments. *Appl. Environ. Microbiol.* 2003; 69: 852-860.
- 39. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG, The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Res.* 1997; **49**: 269-79.
- 40. Verrelli DI, Dixon DR, Scales PJ., Effect of coagulation conditions on the dewatering properties of sludges produced in drinking water treatment. *Colloids and Surfaces Colloid. Surface.* 2009; **348**: 14-23.
- Wu¨rzer M, Wiedenmann A, Botzenhart K., Microbiological quality of waste residuals from

drinking water preparation. *Water Sci. Technol.* 1995; **31**: 75-79.

- 42. Wang KS, Chou IJ, Chen CH, Wang D., Lightweight properties and pore structure of foamed material made from sewage sludge ash. *Constr. Build. Mater.* 2005; **19**: 627-633.
- 43. Xia SQ, Li JX, He SY, Xie K, Wang XJ, Zhang YH, Duan L, Zhang ZQ., The effect of organic loading on bacterial community composition of membrane biofilms in a submerged polyvinyl chloride membrane bioreactor. *Bioresource Technol.* 2010; **101**: 6601-6609.
- 44. Xing DF, Ren NQ, Song YY., Application of DG-DGGE to analyze microbial community diversity and population dynamics in fermentative hydrogen-producing system. *Acta Ecol. Sin.* 2005; **25**(7): 1818-1823.
- 45. Yamada T, Sekiguchi Y, Imachi H, Kamagata Y, Ohashi A, Harada H., Diversity, localization, and physiological properties of filamentous microbesbelonging to Chloroflexi subphylum I in mesophilic and thermophilicmethanogenic sludge granules. *Appl. Environ. Microbiol.* 2005; 71: 7493-7503.
- 46. Yan ST, Miyanag K, Xing XH, Tanji Y., Succession of bacterial community and enzymatic activities of activated sludge by heattreatment for reduction of excess sludge. *Biochem. Eng. J.* 2008; **39**: 598-603.
- 47. Yoshie S, Noda N, Miyano T, Tsuneda S., Microbial Community Analysis in the Denitrification Process of Saline-Wastewater by Denaturing Gradient Gel Electrophoresis of PCR-Amplified 16SrDNA and the Cultivation *Method. J. Biosci. Bioeng.* 2001; 92(4): 346-353.