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The transverse inertia effect considered and in terms of the principle of energy
equilibrium in viscoelastic mechanics, the 6 order partial differential wave equation and
universe solutions for the dimensionless relaxation and retardation time of wave
propagation in simulated microbiology structures subjected to a uniaxial stress are
deduced. The general solutions for the dimensionless relaxation and retardation time of
wave propagation can converge to the classical results of Maxwell rheological model and
Kelvin solid model separately when transverse inertia effect is not been taken into account.
The transverse inertia effect leads to the increase of relaxation time of wave propagation
with increasing Poisson ratio, ratio of diameter to wave length and layer number. The
transverse inertia effect induces the decrease of retardation time of wave propagation
with increasing Poisson ratio, ratio of diameter to wave length and layer number.
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It took the Daedalus' "hollow molecules”
two decades to become incarnated in a family of
fullerenes. Carbon nanotubes (CNTSs) that are also
an important member in a family of fullerenes
possess cylindrical hollow macromolecules
consisted of carbon atoms in a periodic hexagonal
structure. The past 21 years have witnessed an
intense international research in the field of CNTs
which were discovered by Iijima in 1991 (Iijima,
1991). Some analytic solutions for CNTs mechanical
behavior have been proposed in addition to
experimental works. The modeling for the analysis
of CNTs is mainly classified into two categories.
The first one is the atomic modeling, including the
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techniques such as classical molecular dynamics
(MD) (Yakobson et al., 1997), tight binding
molecular dynamics (TBMD) (Hernandez et al.,
1998) and density functional theory (DFT) (Portal
etal., 1999), which is only limited to systems with
a small number of molecules and atoms and
therefore only restrained to the study of small-
scale modeling. On the other hand, continuum
modeling is' practical in analyzing CNTs with large-
scale sizes. Ru (Ru, 2000) proposed a double-walled
carbon nanotube (DWNT) axial buckling load via
the local elastic shell model. Zhang et al. (Zhang et
al., 2006) investigated the small effect on elastic
buckling of multi-walled carbon nanotubes
(MWNT) under radial pressure. Wang (Wang et
al., 2007) allowed for transverse inertia effect on
static deformation of single walled carbon
nanotube (SWNT). Wang (Wang, 2005) took into
account transverse inertia effect on the wave phase
velocity of CNTs. Yoon et al. (Yoon et al., 2004)
considered transverse inertia effect on the wave
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phase velocity and critical frequency of CNTs.

The attenuation of the displacement
amplitude in wave propagation due to the multiple
scattering of CNTs is negligible because the size
of CNTs is much smaller than the wave length.
Therefore, the attenuation of the displacement
amplitude in wave propagation is mostly induced
by the viscous characteristic of CNTs. CNTs are
remarkably resilient, sustaining extreme strain with
no signs of brittleness, plasticity, or atomic
rearrangements. CNTs are rolled up from some
sheets of graphite (Yakobson et al., 1997) which is
considered as a viscoelastic material. Two important
parameters of relaxation and retardation time of
one-dimensional stress wave propagation are
needed for the study of the constitutive laws of
CNTs. Ordinarily, relaxation and retardation time
could be obtained via split Hopkinson pressure
bar (SHPB) techniques (Zhao, 2003). Indeed
transverse inertia has influence on relaxation and
retardation time. Techniques of inverse analysis
(Inoue et al., 2001) are adopted to estimate
transverse inertia effect.

When CNTs are subjected to bending,
torsion or axial compression, they snap from one
shape to the next, emitting acoustic waves along
its walls at every “crunch”. These “crunchy
molecules” never actually break, but reversibly
accommodate to external stress. At large
deformations of CNTs an abrupt release of energy
is accompanied by a reversible transformation into
a different morphological pattern. The manuscript
derives the 6 order partial differential wave equation
and analytic solutions of relaxation and retardation
time of wave propagation in N-layered CNTs under
an axial stress, which allow for transverse inertia
effect. Such analytic solutions, hitherto unavailable
in this form, are useful to how to eliminate
transverse inertia effect when experimentally
measuring relaxation and retardation time of CNTs.
Order partial differential wave equation in n-
layered CNTS

One of the outstanding features of CNTs
is their hollow circular cirque structure; they
consist of atoms densely packed along a closed
surface that defines the overall shape. The
proposition for the material properties used in
continuum viscoelastic bar model for wave
propagation in CNTs will be studied through an
analysis of N-layered CNTs shown in Fig.1. do and
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di are the diameters of outer and inner surfaces.
The diameter of the mid surface circleisd. h = Nt

is the thickness, N layer number, t the equilibrium
interlayer space of adjacent CNTs.

+ midaxface circle

Fig. 2. Three-parameter solid of N-layered CNTs

Viscoelastic model of N-layered CNTs
subjected to a uniaxial external stress o [x,f) is

platted in Fig.2. The subscription x stands for the
stress direction.

In the Love theory, the radial motion of a
rod was postulated by a simple relation with the
axial motion as (Wu et al., 1998)
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where 2 x,£1, %[ x, 7, £ and w(x, =z, ) are
the displacements of N-layered CNTs in the axial
and radial directions respectively, & Poisson ratio.
Transverse inertial kinetic energy of an infinitesimal
element 4 dx in Fig.1 can be expressed as follows
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where I = alat(d" + W83/ 4 (not 1 "’ maee 14
proposed by Wang and Varadan (Wang et al., 2006)
is an exact expression of the second polar moment
of area for N-layered CNTs with no approximation,
A = g Ner the cross area of circular cirque, 0 the
density.

Table 1 lists the relative error of second
polar moment of area between Ref. (Wang et al.,

2006) and the manuscript at different values of N
(Yuetal.,2000).

Table 1. Error between reference
(Wang et al., 2006) and the manuscript

N 1 2 5 6
error/%  0.4337 1.7126 9.8205 13.5558
N 10 15 18 19
error/%  30.3427 49.4975 58.5294  61.1275

As is seen in table 1 that the larger N is,
the larger the relative error becomes. Of course,
such a surprising large error 61.1275% and

essentially the hypothesis of 40 INf are

unacceptable with the increase of N.
From Fig.1 Newton second law of N-
layered CNTs subjected to a uniaxial stress

o [x,f) in x-axis direction can be written as
do (n8) _ Fulxf ”
dx ar
From the free body diagram of the

infinitesimal element in Fig.1 or Fig.2, the

dul'x,
work Ax Ji%ﬁ'%dx done by the external

stress switches into the longitudinal strain energy

ABe (6 &A(ax,fj
y

inertial dynamic energy expressed by Eq. (3),
namely

dx in Fig.2 and transverse
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Differentiating Eq. (5) with respect to t once infers
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From Eq. (6) it is easy to obtain that
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The constitutive relations in Fig.2 can be
expressed as

a il
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Substitution of Eq. (8) into Eq. (7) and
using Eq. (9) yield
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Substituting Eq. (8) into Eq. (7) results in
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Differentiating Eq. (7) with respect to t once and
using Eq. (9) derive
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Itis simple to deduce from Eqgs. (11)-(12)
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By differentiating Eq. (10) with respect to X once
and employing Eq. (4) it can acquire that
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From the real and imaginary part of Eq.
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By Eq. (15) dividing Eq. (14), the 6 order 4

partial differential wave equation in N-layered CNTs N DR PSPPRp e (21
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For a harmonic longitudinal wave 2ex Em=E + 1, B N e e
propagation in the infinite N-layered CNTs governed Pl T ! Fla anlc
by the wave equation (16), one solution can be 1 .(23)
written in complex form as (Zhao et al., 1995) riad (el + N F W w? fe? -
= [T p-iwtielc)e i
wirnf)=Ue ; =7 gq. (22) dividing Eq. (23) and adopting Eq. (18)
@ =dgci i ..(18)  lead to the dimensionless relaxation time of N-
where , and c are the angular frequency,  layered CNTs as below

attenuation coefficient of displacement amplitude B PR N ey
and phase velocity in CNTs wave propagation Wt Tola —ca) 24)
respectively, the wave length. i
Substitution of Eq. (17) into Eq. (16) concludes As can be seen that Eq. (24) reduces to

_ _ _ the classical result of Maxwell rheological model
ATy —io0 Byt aar (B +EE = when transverse inertia effect is not been
%ﬂi:(d’: + W w(a —@ et HiZmad sy + considered, viz. (e + "1/ 2 is so small that it
1 can be taken as zero. Physical interpretation is that
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. assuming into Egs. (20)-(21) results in
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Eq. (25) dividing Eq. (26) and using Eq.
(18) lead to the dimensionless retardation time of
N-layered CNTs as follows
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(a) Dimensionless relaxation time at N =1

Similarly, as can be observed that Eq. (27)
reduces to the classical result of Kelvin solid model
when transverse inertia effect is not been allowed

for, namely (& + %1/ A becomes so small that

it can be tackled as zero.
Relaxation and retardation time of wave equation
in n-layered CNTS

As an example, isotropic N-layered CNTs
are studied. Such parameters are given below as

a=23=10° kg/m’,
2006), s =0.1%9 (Yakobson et al., 1996, Zhu et
al., 2008), elastic modulus E =5.5 TPa, nm,
flexural rigidity D= Ef* /1201 - xM] =025 eV,
in-plane stiffness (= Ff = 59 &V/ atom =360 J/

(Wang et al.,
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(b) Dimensionless relaxation time at p = 0.19

Fig. 3. Dimensionless relaxation time of CNTs
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(b) Dimensionless relaxation time at p = 0.19

Fig. 4. Dimensionless relaxation time of CNTs
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m? as a virtually constant parameter, 4 =1 nm,
@=1 THz, m/s (Yoon €t al., 2004),
g=13%m', 2=1~60nm

Fig.3 provides the dimensionless
relaxation time of wave propagation in N-layered
CNTs at different Poisson ratios and layer numbers.
The transverse inertial effect results in the increase
of relaxation time of wave propagation with
increasing Poisson ratio, ratio of diameter to wave
length and layer number.

Fig.4 shows the dimensionless retardation
time of wave propagation in N-layered CNTs at
different Poisson ratios and layer numbers. The
transverse inertial effect induces the decrease of
retardation time of wave propagation with
increasing Poisson ratio, ratio of diameter to wave
length and layer number.

CONCLUSIONS

The transverse inertia effect taken into
account, the general solutions for the
dimensionless relaxation and retardation time of
wave propagation in N-layered CNTs subjected to
a uniaxial stress are deduced. The general solutions
for the dimensionless relaxation and retardation
time of wave propagation can reduce to the classical
results of Maxwell rheological model and Kelvin
solid model separately when transverse inertia
effect is not been allowed for.

The transverse inertial effect results in the
increase of relaxation time of wave propagation with
increasing Poisson ratio, ratio of diameter to wave
length and layer number. The transverse inertial
effect induces the decrease of retardation time of
wave propagation with increasing Poisson ratio,
ratio of diameter to wave length and layer number.
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