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Recent biological studies of bacterial colonies have revealed diverse complex
social behaviors, including cooperation in foraging, building, dispersing and
communicating. In order to provide the novel models of bacterial foraging behavior and
new methods for distributed nongradient optimization, this paper proposed a
computational simulation model of bacterial colony by combining chemotaxis, cell-to-
cell communication, and a self-adaptive foraging strategy. The simulation results show
that the proposed model of artificial bacterial colony exhibit the property identified by
microorganisms that their foraging is social and adaptive in order to be able to climb
noisy gradients in nutrients. This provides a connection between evolutionary forces in
bacterial social foraging and distributed nongradient optimizational algorithm design
for global optimization over noisy surfaces.
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Nature serves as a rich source of
concepts, principles, and mechanisms for
designing artificial computational systems to solve
complex engineering problems. In recent years, the
computational models of chemotaxis (i.e. the
bacterial foraging behavior) have attracted more
and more attention, due to its research potential in
engineering applications. A few models have been
developed to mimic bacterial foraging behavior and
have been applied for solving some practical
problems (Passino, 2002; Badamchizadeh et al.,
2010; Zhao et al., 2010). Among them, bacterial
foraging optimization (BFO) is a successful
population-based numerical optimization model
that mimics the foraging behavior of E. coli bacteria.
Until now, BFO has been applied to some

engineering problems, such as optimal control,
optimal power flow, color image enhancement, and
machine learning (Chen et al., 2010).

Through natural selection, some
predatory animals have developed a self-adaptive
foraging strategy called area concentrated search
(ACS, also called area-restricted search), by which
a predator is able to respond to variations in prey
distributions by varying its searching efforts:
following an encounter with food resource, a
forager searches intensively in a more
circumscribed region, while a failure to encounter
a resource leads to a more extensive, less
circumspect mode of search. That is, ACS assumes
that regions dense with preys should be exploited
slowly, to maximize the chances of encounter, and
less dense regions explored rapidly, to minimize
the time spent searching in unprofitable areas
(Gendron and Staddon, 1983). ACS in a continuous
patchy environment thereby ensures that foraging
behaviors will, to some extent, match the
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distribution of resource, and may be viewed as a
simple form of optimal habitat selection (Krakauera
and Rodríguez-Gironés, 1995). The ACS behavior
is regarded as an efficiently adaptive search
strategy, which is employed by many search-
intensive predators, such as birds, lizards, insects
and even some microorganisms.

As a new branch of microbiology, quorum
sensing was discovered by Miller and Bassler
(Miller and Bassler, 2001). Generally, it is a process
that allows bacteria to search for similar cells in
their close surroundings using secreted chemical
signaling molecules called autoinducers. This is
also called “cell-to-cell communication”. Recent
studies of microorganisms have revealed that
bacteria could function as groups and the
individuals within the group could respond to and
benefit from the group as a whole. That is, through
cell-to-cell communication, bacteria can glean
information from the environment and from other
organisms, interpret such information into common
knowledge and learn from past experience (Jacob
et al., 2004). For this reason, bacterial colonies
display diverse complex social behaviors, including
cooperation in foraging, building, reproducing,
purposeful alteration of colony structure and
decision-making. In such a perspective, the
bacterial colony behaves much like a multicellular
organism or a social community.

This paper aims to demonstrate
convincingly that the self-adaptive and
communication approaches are both effective
strategies and can be utilized to help scaling up
the performance of bacterial foraging. That is, this
paper extend the classical BFO model to a novel
bacterial colony foraging (BCF) simulation model
by applying two enhanced manipulated steps,
namely a cell-to-cell communication (i.e. the quorum
sensing) and a self-adaptive foraging strategy (i.e.
the ACS). In the proposed BCF model, each
artificial bacterium can climb the nutrient gradient
based on not only its own experience but also the
knowledge of the others; also, each bacterium can
strike a balance between the exploration and the
exploitation of the search space during its
evolution, by adaptively tuning the magnitude of
its chemotactic step size.

In the experiment, we validate the models
and show that the principle of climbing noisy
gradients introduced in this paper.

Bacterial colony foraging model
In the proposed BCF model, the most

important contributions are: (1) to define the
bacterial self-adaptive foraging strategy that
dynamically balances the exploration and
exploitation behaviors during the foraging process
of each bacterium; (2) to define the bacterial cell-
to-cell communication mechanism that enables the
information sharing among bacterial colony.  This
work extends the classical BFO to a self-adaptive
and cooperative foraging model by constructing
the following processes:
Self-adaptation

A central problem for the natural
predators in the foraging process is how to balance
two conflicting alternatives: the exploitation (i.e.,
to search thoroughly in promising areas) and the
exploration (i.e., to move to distant areas
potentially better than the actual one).

According to the ACS strategy, each
bacterium in the colony has to permanently
maintain an appropriate balance between
“Exploration” and “Exploitation” states by varying
its own run-length unit adaptively. The criteria that
determine the adjustment of individual run-length
unit and the entrance into one of the states are
defined as following:
Criterion-1

if the bacterium discovers a promising
domain, the run-length unit of this bacterium is

Table 1. The dynamic self-adaptive strategy

1. FOR (each bacterium i)  IN  PARALLEL
2. IF (Criterion-1) then  //exploitation

3. = ;

4.  = ;

5. ELSE IF (Criterion-2) then   //exploration

6. = ;

7. = ;

8. ELSE

9. = ;

10. = ;

11. END IF
12. END FOR IN PARALLEL
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adapted to a smaller one. Here “discovers a
promising domain” means this bacterium registers
a fitness improvement beyond a certain precision
from the last generation to the current. Following
Criterion-1, the bacterium’s behavior will self-adapt
into the Exploitation state.
Criterion-2

if the bacterium’s current fitness is
unchanged for a number K

u
 (user-defined) of

consecutive generations, then augment this
bacterium’s run-length unit and this bacterium
enters the Exploration state. This situation means
that the bacterium searches on an un-promising
domain or the domain where this bacterium focuses
its search has nothing new to offer.

This self-adaptive strategy is given in
pseudocode in Table 1. Where t is the current
generation number, C

i
(t) is the current run-length

unit of the ith bacterium, ε
i
(t) is the required

precision in the current generation of the ith

bacterium, l is the run-length unit decreasing
parameter that is a user-defined constant,

and are the initialized run-length unit

and the precision goal respectively.
Cell-to-cell Communication

In the light of the analogy between
bacterial quorum sensing and swarming pattern of
bird flocking and fish schooling, a novel principle
of cell-to-cell communication for bacterial foraging
model is introduced.

In BCF model, when a bacterial turns, its
choice of a new direction should not be governed
by a probability distribution, while be dominated
by the information combination of itself and its
colony members. Accordingly, we introduce an
additional direction component D

i
 to each

bacterium. Then in the BCF model, at the tth iteration
the direction is computed as:

...(1)

where k is the weight for the previous
direction of the ith bacterium, which represents how
the bacterium trusts its own status at present

location,  is the best position where this

bacterium had been,  is the overall global best

position ever achieved by the bacterial colony,

 and  are both unit vectors

for indicating the directions only, φ1 and φ2 are the
learning rates that control the influence levels of
cognitive and social components to make different
swimming directions, R

1
 and R

2
 are random numbers

uniformly distributed in [0, 1].
In this context, each bacterium adjusts

its tumble angle according to the personal
historical experience and the bacterial colony social
knowledge. This cell-to-cell communication based
cooperation may provide bacteria with more
accurate information about the search because it
is the whole colony that engaged in searching the
solution space not just the single bacterium.

Fig. 1. Flowchart of the BCF Model

Enhanced Chemotaxis
Then in each chemotactic step, the self-

adaptive chemotactic step-size C
i
 controls the swim

amplitude taken by the ith bacterium towards a
desired direction, which is specified by the cell-to-
cell communication based tumble direction D

i
:

...(2)
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The flowchart of the BCF model is
illustrated in Fig. 1, where S is the colony size, t is
the chemotactic generation counter from 1 to max-
generation, i is the bacterium’s ID counter from 1
to S, X

i
 is the position of the ith bacterium, N

s
 is the

maximum number of steps for a single activity of
swim, flag

i
 is the number of generations that the ith

bacterium has not improved its own fitness.
Simulation results

In order to analyze the self-adaptive and
group foraging behaviors of the BCF model, the
evolution dynamics of the single artificial
bacterium and the bacterial colony are both
simulated in this section.

In the first simulation, we demonstrate the
self-adaptive foraging behaviors of a single
bacterium on 2-D Sphere, Rosenbrock, Rastrigrin
and griewank functions, which are formulated in
Table 2 and illustrated in Fig. 2(a)~(d) respectively.
the initialized run-length unit Cinitial was set to be
1% of the search space, the initial precision goal
einitial=100, the generation limit for jumping out of
local optima K

u
=20, and after performing a series

of hand-tuning experiments, the run-length unit
decreasing parameter λ =10, the population size S
= 1, and the evolution process proceeds 1000
chemotatic steps.

Fig. 3(a) illustrates the bacterial
trajectories in the 2-D unimodal Sphere function,
which start at point (-5,-5). As we can see, the
proposed self-adaptive strategy is important
because it permits the bacteria to refine its foraging
behaviors adaptively. At the beginning of the

simulation, the bacterium starts exploring the
search space. In that manner, the bacterium does
not waste much time before finding the promising
region that contains the global optimum, because
the large run-length unit encourages long-range
search. On the other hand, by self-adapting the
parameters, the bacterium slows down (i.e. the
bacterium enter the exploitation state) near the
optimum in order to pursue the more and more
precise solutions. Fig. 3(c) illustrates the bacterial
trajectories (start at point (-4,-4)) in the contour
plotted 2-D multimodal Rastrigrin function. We can
observe that the bacterium is switching between
exploitation and exploration states by self-adapting
its run-length unit. Whenever the bacterium
encounters a fitness improvement, this forager
starts searching intensively in this promising
region. Whereas, whenever it is highly probable
that the good solutions lying in this region have
been found by this bacterium, it moves away from
this region and starts to explore the other regions
of the search space until another better region is
discovered. Finally, we can observe that the
bacterium find the domain that contains the global
optimum. The similar self-adaptive pattern can be
noticed in Fig. 3(b) and (d), which plotted the
bacterial foraging trajectories on Rosenbrock and
Griewank function respectively. Clearly, this result
captures the important aspects of the ACS
mechanism that takes place in nature.

In the second simulation, the evolution
of the bacterial colony was simulated on 2-D
Sphere, Rosenbrock, Rastrigrin and griewank

Table 2. Benchmarks

Name Function Limits

Sphere

Rosenbrock

Rastrigrin

Griewank
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(a) Sphere (b) Rosenbrock

(c) Rastrigrin (d) Griewank

Fig. 2. Nutrient landscape

(a) Sphere (b) Rosenbrock

function respectively. In each case, the bacteria
colony is distributed randomly over the nutrient
map defined by each function, and the evolution
process proceeds 1000 chemotatic steps, and the
other parameters were the same as in the bacterial

colony foraging simulation, except S = 6.
The motion trajectories of the bacterial

colony with cell-to-cell communications are shown
in Fig. 4, in which the search space that defines by
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(c) Rastrigrin (d) Griewank

Fig. 3. Self-adaptive foraging trajectories of single bacterium on nutrient landscapes

(a) Sphere (b) Rosenbrock

(c) Rastrigrin (d) Griewank

Fig. 4. Cooperative foraging trajectories of bacterial colony on nutrient landscapes
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the four functions are contour plotted. In Fig. 4(b),
we can observe that with the new cell-to-cell
communication mechanism, all the bacteria have
found the long and narrow valley of the
Rosenbrock function (which contains the global
optimum) and move around it in the end of the
foraging phase. We found a similar pattern in Fig.
4(c), where the bacteria colony pursue the valleys
and avoid the peaks of the multimodal Rastrigrin
function. In the first phase the bacterial colony
explore many regions of the nutrient map.
According to the information transferred by the
bacteria in the better positions, the other bacteria
join these food sources and then find a good deal
of local optima, including the global optimum. The
similar group foraging pattern can be also found in
Fig. 4(a) and (d), which also plotted the foraging
trajectories of bacterial colony on Sphere and
Griewank function.

CONCLUSION

The main conclusions that can be drawn
from this study include:
(i) A continuous optimization model is

appropriate for bacterial colony foraging.
(ii) The model of social bacterial colony

foraging is also distributed nongradient
optimization method and that has the
potential to be useful in practical
optimization problems.

There are a wide variety of fruitful
researches directions in the future work. There are
ways to improve the models (e.g., modeling more
dynamics of the lifecycle of bacterial colony).
Moreover, it remains to be seen how practically
useful the optimization algorithms are for
engineering optimization problems, which depend
on the theoretical properties of the algorithm,
theoretical and empirical comparisons to other
methods, and extensive evaluation on many
benchmark problems and real-world problems.
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