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The regeneration of amputated limbs of salamanders and newts has been studied
for over a century, however, the exact mechanism of regeneration remains unclear.  Previous
studies have shown that acetylcholine is present in abnormal levels during the process of
limb regeneration.  It has been demonstrated that ligand-gated ion channels will open in
response to acetylcholine activity, inducing significant ion fluxes.  These movements of
ions in turn generate small electric currents, which have been shown to influence cell
behavior.  We have found that these events correlate well with the observed regeneration
patterns at the tissue, cellular, and intra-cellular levels.  Therefore, we hypothesize that
endogenous electric currents – otherwise known as bioelectricity - generated by
acetylcholine activity, is an essential factor in salamander and newt limb regeneration.
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Certain species of animals, such as the
salamander, have a unique ability to regenerate
severed limbs(Binggeli and Weinstein, 1986;
McCusker and Gardiner, 2011; Menger et al., 2010;
Nacu and Tanaka, 2011).  Studies on this
regenerative process provide insight into stem cell
generation and possibilities of medical application
of tissue regeneration in higher vertebrates
(Menger et al., 2010; Roy and Gatien, 2008; Roy
and Levesque, 2006; Song et al., 2010).  In this
paper, we aim to explore an alternative hypothesis
that until now have evaded extensive research.
Current understanding of regeneration1

Once a salamander has one of its limbs
amputated, epithelial cells surrounding the wound

migrate to form an epidermal layer.  The cells
beneath this newly formed epidermis will de-
differentiate, forming a regeneration blastema
(Brockes, 1997; Hyun et al., 2012; Tamura et al.,
2010; Tweedell, 2010).The blastema cells then
proliferate, forming a limb bud from which the new
limb will grow(Nye et al., 2003). Early studies by
Todd, Schotte and Butler have identified that
sympathetic nerve innervations had a key role in
stimulating limb generation(Oscar E. Schotté, 1944;
Satoh et al., 2012; Todd, 1823).  Their observations
were followed by a comprehensive series of
experiments by Singer, which showed that not only
did denervation of a newt limb prevents it from
regenerating, but also that if the conditions of the
wound is replicated elsewhere on the organism, a
limb can be generated at the desired site(Singer
and Craven, 1948; Singer and Mutterperl, 1963).
Furthermore, it was found that the impact of nerves
in regeneration is quantitative, not qualitative
(Singer, 1952).
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Although the exact mechanism between
nerve stimulation and limb regeneration is still not
clearly understood, recent studies have a strong
focus on the molecular basis for regeneration.
Brockes suggested that if a molecular factor for
the survival and proliferation of the blastema cells
exists, the candidate molecule should fulfill four
criteria; 1) they should be secreted from the AEC
(Apical Epidermal Cap)(Stocum, 2004, 2011) or
nerve endings into the blastema;, 2) removal of the
AEC or nerves should result in loss of the molecule
from the blastema; 3) the molecule should be able
to substitute for the AEC or nerves in maintain
mitosis and/or promoting regeneration to
completion; and 4) selective neutralization of the
molecule should abolish its mitogenic effect on
blastema cells(Brockes, 1984).  Based on Brockes
suggestion, extensive work in search for these
factors have been done in recent years, and growth
factors such as molecules in the Fibroblast Growth
Factor family, transferrin, Glial Growth Factor-2,
substance P, iron-transport protein…etc have been
isolated as candidate molecules(Christensen et al.,
2001; Dungan et al., 2002; Globus and Alles, 1990;
Mescher, 1996; Mullen et al., 1996; Nilsson et al.,
1985; Wang et al., 2000).
Possible role of neurotrasmitter acetylcholine
(ACh)

As a major component of the
neurotransmitter system, ACh acts by binding to
ACh receptors in the extracellular space (also
known as the synaptic cleft).  When binding to

nicotinic receptors, which are ligand-gated ion
channels(Arias, 2010; Jadey and Auerbach, 2012),
ACh may cause these channels to open, allowing
an influx of charged ions.  This influx, when
significantly large, can generate a weak electric
field, otherwise known as bioelectricity.  A recent
review by Levin stated that regenerating amphibian
limbs exhibits a similar electric current, which
decreases as the limb heals and regenerates(Levin,
2009).
Presentation of hypothesis

After amputation of a salamander limb,
whether from tips to shoulder, damaged nerve fibres
near the wound release ACh.  This sudden release
and accumulation of the neurotransmitter can
activate surrounding ligand-gated ion channels,
which in turn generates an electric current via the
influx of charged ions. We postulate that this
electric current, also known as bioelectricity, plays
a key role in spatial signaling and activate cellular
processes which ultimately determine the success
of limb regeneration.
Supporting evidence
Regenerative processes influenced by
bioelectricity

The presence of electric currents in living
organisms is a phenomenon that has been
observed for centuries; these currents have been
known to influence regeneration at the tissue,
cellular, and intracellular levels. At the tissue level,
animals capable of regenerating complex structures
produce a direct-current signal can be detected

Fig. 1. Diagram showing proposed experimental procedures
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during the regenerative process(Borgens et al.,
1984).  Surprisingly, some animals that normally
don’t exhibit regeneration abilities have
successfully regenerated, at least in part, some of
the loss structure when an exogenous electric
current, similar to that of a regenerative
bioelectricity, is applied to amputated
structures(Sharma and Niazi, 1990; Smith, 1967;
Smith, 1981). Furthermore, the inhibition or
interfering (e.g. induced polarity reversal) of these
currents leaving amputated limbs of certain
regenerative animals disrupts their re-growth
(Jenkins et al., 1996).  It has been suggested that
this phenomenon is due to a steady-state electric
field that exists in intact tissues and organs, and
once the equilibrium is interrupted (e.g. by a flesh
wound on the skin), the surrounding cells would
react accordingly to inducing healing or
regeneration.  From this we can see that
bioelectricity is an indispensible element of
regeneration.

At the cellular level, bioelectricity is
essential for cell proliferation, cell differentiation/
de-differentiation, and cell migration(Levin, 2009,
2012; Levin and Stevenson, 2012; McCaig et al.,
2009). One of the earliest effects of bioelectricity
observed is the change of cell orientation and cell
migration towards the anode or cathode (Bellamy,
1922).  In order to complete limb regeneration, cells
must migrate to their pre-determined location to
replace lost structures; this is in part guided by
electrical gradient generated from the severed
nerves, forming a spatial map for cells within
seconds of amputation(Shi and Borgens, 1995).  In
terms of cell differentiation/de-differentiation,
Barth and co-workers have shown that it can be
modulated by ion-gradients, typically produced
when bioelectricity is present(Barth and Barth,
1974).  By permitting terminally differentiated cells
to de-differentiate, the rate of mitosis is greatly
increased, leading to significant proliferation in
regenerative tissue(Binggeli and Weinstein, 1986;
MacFarlane and Sontheimer, 2000).

At the intra-cellular level, it has been
shown that cells important for wound healing, such
as keratinocytes and neutrophils, respond to
electrical stimulation in serum-free medium(Zhao
et al., 2006).  In Zhao and his colleagues’ work,
they’ve found that small electric fields induce rapid
and sustained phosphorylation of extracellular-

signal-regulated kinase (ERK), p38 mitogen-
activated kinase (MAPK), Src, and Akt on Ser 473.
These kinase pathways are similar to those induced
by chemotactic signaling(Funamoto et al., 2002;
Kimmel and Parent, 2003; Servant et al., 2000),
confirming that bioelectricity has a predominant
role in tissue regeneration.
Endogenous generation of bioelectricity via ACh

In newts and salamander, ACh level rises
significantly after limb amputation, and reaches a
maximum level in around 2 weeks(Singer, 1960b).
This rise in ACh causes rapid opening of
surrounding ion-channels, generating a constant
electric current, the residue of which can be
measured for weeks to months, much longer than
required for normal healing of damaged
cells(Becker, 1961; Borgens et al., 1984).  The
change in electrical pattern coincides with the
morphogenesis of the lost limb, with the peak
voltage being observed when cell proliferation is
at a maximum.  As regeneration occurs, the amount
of ACh is regulated via an increase in
acetylcholinase (AChE) activity, gradually
decreasing until the completion of morphogenesis,
when it returns to normal(Singer, 1960b).
Furthermore, in an earlier work studying the
regeneration of newt limbs, significant amounts of
ACh was found in all stages of limb growth(Singer,
1959), and that blocking agents of ACh such as
procaine hydrochloride, atropine sulphate, and
tetra-ethylammonium hydroxide exerts a
suppression effect on regeneration(Singer, 1960a).
Testing the hypothesis

To test our hypothesis, we propose an
experiment in which the level of ACh and electrical
current in salamanders’ regenerating limbs is
controlled.

The salamanders will be divided into two
sets of test subjects.  The first set of test subjects
(Set A) will have their forelimbs amputated mid-
way between shoulder and digits, and have their
left forelimbs transfected with AChE.  Their
forelimbs will be tested for the presence and level
of bioelectricity daily over the first week, and then
weekly over the next 21 days.

The second set of test subjects (Set B)
will also have their forelimbs amputated mid-way
between shoulder and digits, but will have both
forelimbs tranfected with AChE.  The right
forelimbs will be attached to an electricity source
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providing a small current similar to that of
endogenous bioelectricity, while the left forelimbs
will be untreated.  These subjects will be monitored
over four weeks and observed for any signs of
limb regeneration.

If our hypothesis is confirmed, we would
expect that sustained electrical currents can be
detected in the right forelimbs of Set A, and the
currents detected should be significantly higher
than that observed in their left forelimbs, which
indicate the importance of ACh’s role in
bioelectricity generation.

We would also expect the left forelimbs
of Set B to show signs of limb regeneration as
normal, while their right forelimbs ability to
regenerate would be significantly impaired, thus
demonstrating the vital role of bioelectricity in limb
regeneration.
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