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The social foraging behavior of E.coli bacteria has been used to solve optimization
problems. This work proposes a novel cooperative bacterial foraging algorithm (CBFA)
for complex optimization problems. The proposed CBFA extend original bacterial foraging
algorithm to adaptive and cooperative mode by combining bacterial chemotaxis, cell-to-
cell communication, and an adaptive foraging mechanism. Then the performance analysis
is given where the proposed algorithm is benchmarked against four state-of-the-art
reference algorithms using a composition test function suites. Statistical analysis result
highlights the significant performance improvement due to the beneficial combination
and shows that the proposed algorithm outperforms the reference algorithms.

Key words: Bacterial Forging, Chemotaxis, Cooperative Foraging, Composition Function.

Recent studies of microorganisms have
revealed diverse complex social behaviors,
including cooperation in foraging, building,
reproducing, dispersing and cell-to-cell
communicating. In recent years, search and optimal
foraging of bacteria have been used for solving
optimization problems. A few models have been
developed to mimic bacterial foraging behavior and
have been applied for solving some practical
engineering optimization problems (Passino, 2002;
Badamchizadeh et al., 2010; Zhao et al., 2010).
Among them, bacterial foraging algorithm (BFA)
is a successful population-based optimization
model that mimics the foraging behavior of E. coli
bacteria. Until now, BFA has been applied to solve
the engineering problems in optimal control, optimal
power flow, color image enhancement, and machine
learning domains (Chen et al., 2010). However, there
are no cooperation or communication mechanisms
in the original BFA model, and all bacterial
individuals suffer premature convergence to the

local optimum in the first generations when solving
complex multimodal problems.

Quorum sensing, namely the cell-to-cell
communication mechanism in bacterial colony, was
discovered by Miller and Bassler (Miller and
Bassler, 2001). Generally, it is a process that allows
bacteria to search for similar cells in their close
surroundings using secreted chemical signaling
molecules called autoinducers. That is, through
cell-to-cell communication, bacteria can glean
information from the environment and from other
organisms, interpret such information into common
knowledge and learn from past experience (Jacob
et al., 2004).

Natural selection tends to eliminate
animals with poor foraging strategies through
methods for locating, handling, and ingesting food
and favors the propagation of genes of those
animals that have successful foraging strategies
(Gendron and Staddon, 1983). In nature, living in
groups allows individuals to allocate foraging effort
between two different roles, namely the producer
and the scrounger (Krakauera and Rodríguez-
Gironés, 1995). The “producer” can be used to
locate food patches independently, while the
“scrounger” can be used to exploit the food
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discovered by other group members. Producer-
scrounger models suggest equilibrium and
flexibility in use between the two strategies in
response to changes in environment, which alters
the costs and benefits of producing and
scrounging. It is essentially this idea that could be
applied to complex optimization problems. The
optimization problem search space could be
modeled as a social foraging environment where
groups of parameters adaptively updating for
finding solutions to difficult engineering problems.

This paper extend the classical BFA
algorithm to a novel cooperative bacterial foraging
algorithm (CBFA) by applying two enhanced
manipulated steps, namely a cell-to-cell
communication (i.e. the quorum sensing) and a self-
adaptive foraging strategy (i.e. the ACS). In the
proposed CBFA, each artificial bacterium can climb
the nutrient gradient based on not only its own
experience but also the knowledge of the others;
also, each bacterium can strike a balance between
the exploration and the exploitation of the search
space during its evolution, by adaptively tuning
the magnitude of its chemotactic step size.

In the experiment, we validate the CBFA
on the novel hybrid benchmark called composition
function (Liang et al., 2005). The proposed
algorithm is benchmarked against four state-of-
the-art reference algorithms to show the merits of
the beneficial combination of adaptive strategy and
cell-to-cell communication mechanism.

Cooperative bacterial foraging algorithm
This work extends the classical BFA to

an adaptive and cooperative foraging model by
constructing the following processes:
Adaptation

As indicated in the previous study, the
bacterium with a small run-length unit has the
exploring ability while the bacterium with a
relatively large run-length unit has the exploiting
skill. This inspired us to divide the foraging
procedure of artificial bacteria colony into multiple
Explore/Exploit phases, each characterized by the
different value of run-length unit and occupies a
portion of generations. This approach produces
two classes of bacterial individuals – producers
and scroungers – depending on the particular run-
length unit that they used. The bacterial producer
explores the search space and has the
responsibility to find the promising domains and
to leave the local optima that have visited, while
the bacterial scrounger focuses on the precision
of the found solutions, i.e. the bacteria perform
exploitation of the neighborhood of the best-so-
far solutions found by the producers. This strategy
encompasses the following features:

In the initial phase, the bacteria colony
searches the whole space of the problem with a
large run-length unit – C

initial
 (Here, the same run-

length unit is used for all bacteria in the colony),
which permits all the bacterial individuals (i.e. the
producers) to explore the whole space efficiently
and avoid being trapped in local optima. Each
bacterial producer records all its visited points and
the point with the highest fitness value is
considered as potential solution candidate, which
are supplied as an input to the next phase. When
entering into the next phase, the bacteria colony is
reinitialized with a relatively smaller run-length unit
from the potential candidates found in the previous
phase. That is, the bacterial scroungers join
resources uncovered by the producers. Then they
start exploiting the neighborhood of these current
best positions until the needed criteria (the
feedback from the search process) for switching
to the next phase is reached. That is, in each phase
(except the initial phase), the newly initialized
bacterial scroungers will join the resources
uncovered by others in the forgoing phase and
then exploit them for more precise solutions.

This dynamic adaptive strategy is given

Table 1. The dynamic adaptive strategy

1: IF (t mod n = 0) then

2: IF (   <  ) then

3: = ;

4: = ;

5: ELSE

6: = ;

7 = ;

8: END IF
9: ELSE

10: =  ;

11: =  ;

12: END IF
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in pseudocode in Table. 1. Where t is the current
generation number, f

best
 is the best fitness value

among all the bacteria in the colony, ε(t) is the
required precision in the current generation and n,
α and β are user-defined constants. Using this
strategy, changes in the parameter values of C are
now based on feedback from the search, and the
adaptation happens every n generations. Here, in
order to perform fine-tuning exploitation of the
global optimum, the run-length unit C(t) adaptively
decreases form phase to phase.
Cell-to-cell Communication

In the light of the analogy between
bacterial quorum sensing and swarming pattern of
bird flocking and fish schooling, a novel principle
of cell-to-cell communication for bacterial foraging
model is introduced.

In BCF model, when a bacterial turns, its
choice of a new direction should not be governed
by a probability distribution, while be dominated
by the information combination of itself and its
colony members. Accordingly, we introduce an
additional direction component D

i
 to each

bacterium. Then in the BCF model, at the tth iteration
the direction is computed as:

...(1)

where k is the weight for the previous
direction of the ith bacterium, which represents how
the bacterium trusts its own status at present

location,  is the best position where this

Fig. 1. Flowchart of the CBFA
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bacterium had been,  is the overall global best

position ever achieved by the bacterial colony,

 and  are both unit vectors

for indicating the directions only, φ
1
 and φ

2
 are the

learning rates that control the influence levels of
cognitive and social components to make different
swimming directions, R

1
 and R

2
 are random numbers

uniformly distributed in [0, 1].
In this context, each bacterium adjusts

its tumble angle according to the personal
historical experience and the bacterial colony social
knowledge. This cell-to-cell communication based
cooperation may provide bacteria with more
accurate information about the search because it
is the whole colony that engaged in searching the
solution space not just the single bacterium.
Enhanced Chemotaxis

Then in each chemotactic step, the
adaptive chemotactic step-size C

i
 controls the swim

amplitude taken by the ith bacterium towards a
desired direction, which is specified by the cell-to-
cell communication based tumble direction D

i
:

...(2)

The flowchart of the CBFA is illustrated
in Fig. 1, where S is the colony size, t is the
chemotactic generation counter from 1 to max-
generation, i is the bacterium’s ID counter from 1
to S, X

i
 is the position of the ith bacterium, N

s
 is the

Table 2. Performance of all algorithms on composition test suite. In bold are the best results

Functions CBFA BFA PSO GA

Cf
1

Best 3.89e-23 385.3748 0.0479 218.1051
Worst 154.5088 749.5304 400 473.9154
Mean 80.0451 543.6946 170.0000 340.0539
Std 51.48185 121.0532 115.9502 182.6628

Cf
2

Best 4.41875 305.4715 13.6612 237.7604
Worst 163.3168 981.2563 412.2278 654.8377
Mean 87.0864 704.4957 206.1286 503.5424
Std 49.6802 177.0293 121.0506 131.9398

Cf
3

Best 4.1393 614.8877 188.0639 545.0193
Worst 203.7025 1.1640e+003 409.3549 973.2386
Mean 85.813 911.7979 249.5267 775.7547
Std 66.75095 184.0234 71.9234 154.0171

Cf
4

Best 147.3339 606.2175 298.3002 602.1163
Worst 304.2291 1.4776e+003 721.5762 1.0681e+003
Mean 187.9278 1.0816e+003 464.4095 848.6733
Std 48.63005 269.5876 164.5941 151.5677

maximum number of steps for a single activity of
swim, flag

i
 is the number of generations that the ith

bacterium has not improved its own fitness.
Simulation results

The test suite contains four composition
functions (Cf

1
 – Cf

4
), each of which is composed

by 10 basic functions of 10 dimensions:

...(3)

where
n: the number of basic function.
w

i:
 weight value for each f

i
(x).

f
i
(x): ith basic function used to construct the

composition function.
o

i
: new shifted optimum position for each f

i
(x).

o
iold

: old optimum position for each f
i
(x).

»
i
: used to stretch or compress the function.

M
i
: orthogonal rotation matrix for each f

i
(x).

bias
i
: define which optimum is global optimum.

The basic function set that constructs
composition functions is given by the Sphere,
Rastrigin, Weierstrass, Griewank, and Acley
functions, which have been formulated in Table 2.
The search range for all the composed functions is
[-5, 5]D. The detailed description of the method for
constructing these composite functions can be
referred to17.

In general the multimodal composite
function Cf

1
 (Fig. 2a) was constructed using 10

unimodal Sphere functions, this resulting function
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Fig. 3. Fitness convergence on
composition nutrient landscapes

(a) Cf
1

(b) Cf
2

(c) Cf
3

(d) Cf
4

Fig. 2. Composition landscape

(a) Cf
1

(b) Cf
2

(c) Cf
3

(d) Cf
4
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has one global optimum and nine local optima. Cf
2

(Fig. 2b), and Cf
3
 (Fig. 2c) were constructed using

10 Griewank and Rastrigin functions, respectively.
Since they have more complex multimodal
functions, localizing their local optima becomes
more complex. Cf

4
 is called hybrid function because

it is constructed with different basic functions. That
is, Cf

4
 (Fig. 2d) is composed by the Acley function

(f
1
–f

2
), Rastrigin function (f

3
–f

4
), Weierstrass

function (f
5
–f

6
), Griewank function (f

7
–f

8
), Sphere

function (f
9
–f

10
). For these composite functions the

global optima are very difficult to reach even when
the global optima areas have been found.

To fully evaluate the performance of the
proposed CBFA, three successful optimization
algorithms were used for comparison (Chen et al.,
2010):
l Canonical particle swarm optimization
with constriction factor (PSO);
l Classical bacterial foraging algorithm
(BFA);
l Standard genetic algorithm (GA).

The optimization results, the
convergence characteristics, and the box plots of
the ANOVA test of the 30 runs are presented in
Table 2, Fig. 2, 3 and 4 respectively. From these
results, we can observe that the CBFA algorithm
surpasses all other algorithms on all composition
fnctions.

CONCLUSION

The main conclusions
(i) An adaptive and cooperative optimization

model is appropriate for bacterial foraging
algorithm.

(ii) The model of proposed CBFA has the
potential to be useful in many benchmark
problems and real-world problems.
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Fig. 4. ANOVA test on composition functions. 1, 2, 3, 4 is
the algorithm index of CBFA, PSO, GA, BFA, respectively
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