Production of L-glutaminase by *Streptomyces rochei* Detected from the Lime Stone Quarries of Deccan Trap

Mousumi Das¹, Dayanand Agsar^{*} and S. Shivaveerakumar

A-DBT Research Laboratory, Department of Microbiology, Gulbarga University, Gulbarga - 585 106, India.

(Received: 18 January 2013; accepted: 04 March 2013)

The present study focuses on exploration of an actinomycete from limestone quarries of deccan trap for the production of L-glutaminase. *Streptomyces rochei*, a promising producer of L-glutaminase was confirmed based on 16S rDNA sequence (DMQ-14: JQ889270) analysis. At optimum level of process parameters (pH-8.0; temperature - 40° C; inoculum size-1x10⁸ spores/ml and agitation-200 rev/min.) a linear increase (9.86±0.025 IU; 12.28±0.010 IU; 13.46±0.015 IU; 15.78±0.02 IU respectively) in the production of L-glutaminase by *Streptomyces rochei* was achieved. Among the nutritional sources, Starch and L-glutamine at 1.0 % w/v proven to be the best carbon and nitrogen sources for the enhanced production (25.42±0.040 IU and 30.24±0.01 IU respectively) of L-glutaminase. MgSO₄, 7H₂O (0.05% w/v) proved to be the most suitable metal ion for further increase (31.55±0.020 IU) in the production of L-glutaminase. Thus, with all the optimized conditions, the maximum production of L-glutaminase was 31.55±0.020 IU.

Key words: L-glutaminase, Actinomycetes, Limestone quarry, Submerged system, Optimization, 16S rDNA.

L-glutaminase (EC 3.5.1.2) is an amidohydrolase enzyme which generates Lglutamic acid and ammonia from L-glutamine (Archibald 1944). This cellular enzyme deaminates L-glutamine and acts as a proteolytic endopeptidase, which hydrolyses the peptide bonds present in the interior of protein molecules. It is ubiquitous from the presence point of view in plants, animals and microbes both in prokaryotes and eukaryotes. Among some well studied genera in microbes worth mentioning from study perspective are E. coli (Prusiner and Stadtman, 1976), Pseudomonas sp. (Jyoti et al., 2011), Brevibacterium sp. (Imada et al., 1973), Vibrio costicola (Jeyaprakash et al., 2010), Streptomyces rimosus (Sivakumar et al., 2006), Streptomyces avermitilis and Streoptomyces labedae (Abdallah

et al., 2012), Streptomyces gresius (Muthuvelayudham et al., 2013), Hypocrea jecorrnea (Bulbul et al., 2013), Zygosaccharomyces sp. (Iyer and Singhal, 2010), Bacillus sp. (Tadikamalla et al., 2011) and Micrococcus luteus k-3 (Masuo et al., 2005) etc.

Efforts to increase the glutamate content of soya sauce using salt and thermo tolerant glutaminase have drawn much attention (Nandakumar et al., 2003). The action of glutaminase plays a major role as therapeutic agent in cancer and HIV. (Kumar and Chandrasekaran, 2003). It also plays an important role in biosensor as a monitoring agent for glutamine level measurement (Kashyap et al., 2002). A speciality chemical called theanine also used to be produced by this enzyme following c-glutamyl transfer reaction. Use of this enzyme as a flavour enhancer has become a successful alternative against the use of commercial flavour enhancer in Chinese preparations and an allergen by action for individuals (Renu et al., 2003).

^{*} To whom all correspondence should be addressed. Tel.: (08472)-263297; Fax: 08472 263205; E-mail: dasmousumi9@gmail.com

Production of enzyme was influenced by variety of physical and nutritional parameters and factors affecting the production in recent years had received attention as of its great demand in clinical application and also in food industries. Optimization of parameters can in turn influence enzyme synthesis and cell yield (Pandey et al., 2003). It is reported to be produced in both submerged and solid state systems by a number of myriad sources. From the compatibility perspective in mass production and as well as beneficial application aspect extracellular enzyme producer as choice of source is always attractive. Several reports (Dastager et al., 2007a, 2007b, 2008) are there from our research laboratory pertaining to the isolation of novel and potential actinomycetes. Different bioactive molecules have been screened from actinomycetes (Vishalakshi et al., 2009 and Ameena et al., 2010). An attempt has been made in the present investigation to isolate and screen actinomycetes from lime stone quarries of deccan trap, for the extracellular L-glutaminase.

METHODS

Collection and processing of soil samples

Soil samples from the regional lime stone quarries, agricultural fields and crab mount soil samples from the sites of mangrove, near Salim Ali Bird Sanctuary, were collected for the isolation of actinomycetes. The samples collected were cleaned, dried and subjected for phenolic, heat and calcium carbonate treatment (Kuster *et al.*, 1963). **Isolation and basic identification of actinomycetes**

Actinomycetes were isolated from the treated soil samples by serial dilution technique on Starch Casein Agar - SCA (Starch 10, K, HPO, 2.0, KNO₃ 2.0, NaCl 2.0, Casein 0.3, MgSO₄, 7H₂O 0.05, FeSO, 7H, O 0.01 and Agar 20-gL-1). Growth of actinomycetes after the incubation of three days at 35°C, were identified based on the standard colony characters. The important microscopic features namely Gram staining, mycelial branching and sporulation pattern of the selected colonies were recorded. The identified colonies of actinomycetes were subjected for the biochemical characters, utilization of sugars and amino acids (Shirling and Gottlieb, 1966; Buchanan et al., 1974). The confirmed isolates of actinomycetes were sub cultured on SCA and preserved at 4°C.

Screening of actinomycetes for L-glutaminase

The identified isolates of actinomycetes were screened qualitatively by rapid plate assay (Gulati et al., 1997) for the synthesis of Lglutaminase on Starch Glutamine Mineral (SGM) Medium - Starch 10, K, HPO, 2.0, NaCl 2.0, MgSO, 7H₂O 0.05, FeSO₄, 7H₂O 0.01 and Agar 20 gL¹ along with L-glutamine and 1%, phenol red (2.5% alcoholic stock solution) at pH 6.8. Selected isolates of actinomycetes were subjected for quantitative screening by broth culture assay (Imada et al., 1973) using SGM Medium. 1 ml of 0.01% Tween 80 spore suspension of 5 days old test isolate (1x108 spores/ml) were inoculated into 100 ml medium (pH 7.0) and incubated for six days at 35°C. 5 ml of incubated broth was drawn at every 24 hrs and assayed for L-glutaminase activity.

Production of L-glutaminase

A batch wise bioprocess (Krishnakumar *et al.*, 2011) was carried out using a selected potential isolate of *Streptomyces* sp. DMQ-14 in a 250 ml Erlenmeyer flask containing 100 ml of SGM Medium (pH 7.0). After sterilization of the medium at 121° C for 15 min. 5 ml suspension of five days culture with spore count $1x10^8$ spores/ml was inoculated separately and incubated at 35°C for a week. The fermentation was carried out at both static (at 35°C) and shake (180 rpm, 35°C) conditions. The enzyme activity of the fermented broth was determined at every 24 hrs.

Assay of L-glutaminase

5 ml of the culture broth was withdrawn and centrifuged at 6,000-8,000 rpm for 10 minutes. The enzyme assay was carried out with the supernatant obtained as per Imada *et al.* (1973). One IU of L-glutaminase is the amount of enzyme which liberates 1 mmol of ammonia per ml per minute (mmol/ml/min). Ammonium sulphate (6mM) was used as standard (Sivakumar *et al.*, 2006).

Influence of process variables

Important physicochemical process variables such as pH, temperature, agitation, inoculum size and nutritional parameters such as carbon sources (Glucose, Fructose, Maltose, Mannitol and Starch - 0.5 to 2.5 % w/v), nitrogen sources (Beef extract, Malt extract, Calcium nitate, L-glutamine (0.25 to 1.25 % w/v) and metal ions (MgSO₄, 7H₂O, MnSO₄, 7H₂O, CaSO₄, 7H₂O, FeSO₄, 7H₂O, CoSO₄, 7H₂O - 0.05 to 0.25 % w/v) were examined at different range/concentrations in batch wise bioprocess under submerged system as mentioned earlier. One factor at a time approach (Iyer and Singhal, 2010) was employed to understand the influence of process variables on the production of extracellular L-glutaminase. All the values are measured in triplicate and their standard deviation and standard error of mean were calculated using a statistical software Graph Instat pad 3.1 version.

16S rDNA analysis

The genomic DNA of the Streptomyces isolate DMQ-14 was extracted (Rintala and Merja Kontro, 2001) and purified by DNA wizard column - Promega Wizard. The nucleotide sequence was obtained from Department of Biotechnology, University of Helsinki, Finland and submitted to NCBI. BLAST search comparison was made against the Genbank databases and the related strains were selected for alignment by CLUSTAL X program (Thompson et al., 1997). The evolutionary history was inferred using the Neighbor-Joining method and the evolutionary distances were computed using the Maximum Composite Likelihood method (Tamura et al., 2004). Phylogenetic analyses were carried out employing MEGA4.

RESULTS

Isolation and identification of actinomycetes

Colonies obtained on Starch casein agar were identified as actinomycetes based on aerial / substrate mycelium and sporulation pattern. In all six colonies obtained from mangrove soil, two from limestone quarry soil and one from agricultural field soil were further confirmed as genus of Streptomyces based on biochemical properties, showing positive for hydrolysis of gelatin and starch; reduction of hydrogen peroxide and nitrate; negative for hydrogen sulphide production. The physiological properties further confirms the genus and to some extent the species, based on utilization of specific sugars and amino acids. All these morphological, biochemical and physiological characters of the test isolates are as presented in Table 1.

Screening of actinomycetes for L-glutaminase production

The confirmed isolates of actinomycetes belonging to the genus *Streptomyces* were

screened and graded based on the intensity (+ / ++ / +++) of pink colour developed from yellow, indicating maximum synthesis (Table 2) of Lglutaminase. Four isolates namely DMQ-13, DMQ-14, DMM-8 and DMM-10 chosen being highly positive for the synthesis of L-glutaminase were subjected to quantitative screening for the production of L-glutaminase (Figure 1). The isolate *Streptomyces* DMQ-14 has shown maximum production (15.1±0.03 IU) of L-glutaminase, followed by DMQ-13 (12.4±0.04 IU) and the least production was shown by DMM-8 (8.92±0.03 IU), followed by DMM-10 (7.61±0.03 IU).

Effect of process variables on the production of Lglutamianse

The effect of important physicochemical and nutritional process variables on the production of L-glutamianse by the potential isolate of Streptomyces DMQ-14 in a batch wise bioprocess were evaluated. The pH 8.0 (Table 3: 9.9±0.025 IU), Temperature 40°C (Table 4: 12.3±0.01 IU), Inoculum size of 1 X 108 spores /ml (Table 5: 13.5±0.02 IU) and agitation 200 rev/min (Table 6: 15.78 ± 0.02 IU) were recorded to be optimum for the maximum production of L-glutaminase. Among the nutritional process variables, 1.00% of Starch (Figure 2: 25.42±0.04 IU), 1.00 % of L-glutamine (Figure 3: 30.24±0.01 IU) were proved to be effective for the maximum production of L-glutaminase at the end of 120 h of fermentation. The effect of salt (sodium chloride) at various concentrations on the production of L-glutaminase was also examined. The maximum production of L-glutaminase was recorded (Figure 4) at 2.0 % concentration (23.0±0.05 IU) on 120 h of fermentation. The influence of 0.05% of MgSO₄, 7H₂O (Figure 5: 31.35 ± 0.02 IU) were proved to be effective for the maximum production of L-glutaminase at the end of 120 h of fermentation.

Molecular characterization of the potential isolate

Molecular characterization of the potential isolate of *Streptomyces* DMQ-14 was carried out by 16S rDNA analysis. The optimal tree with the sum of branch length = 0.2277795 was plotted. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) were shown next to branches. The tree was drawn to scale; with branch lengths same unites as those of the evolutionary distances used to infer the

					Isolates				
Properties Aerialmycelium	DMM-2 Gray	DMM-8 Dark gray	DMM-10 Dark gray	DMM-11 Gray	DMM-12 Gray	DMM-13 Dark gray	DMQ-13 Dark gray	DMQ-14 Gray	DMS-3 Whitish
Substrate	Pale	Pale	Pale	Colorless	Colorless	Pale	Yellow	Red	gray
mycelium	yellow	yellow	yellow	to yellow	to yellow	yellow	brown	orange	Light
Sporulati	Spiral	Straight	Straight	Open	Straight	Straight	Open loop	Straight	brown Open
on features	Gray	chain	chain	spiral	chain	chain		chain	spiral
	Smooth Smooth	Gray Smooth	Gray Smooth	Gray Smooth	Gray Smooth	Gray Smooth	Gray Warty	Gray Smooth	White
				Hydrolysis of					
Casein	+	+	+	+	+	+	+	+	+
Gelatin	+	+	+	+	+	+	+	+	+
Starch	+	+	+	+	+	+	+	+	+
				Reduction of					
H_2O_2	+	+	+	+	+	+	+	+	+
Nitrate	+	+	+	+	+	+	+	+	+
H ₂ S Production	ı	I	ı	I	ı	ı	I	ı	I
			Ut	Utilization of sugars	IS				
Arabinose	-/+	+	+	+	-/+	+	+	+	+
Fructose	+	ı	+	+	+	ı	+	+	+
Galactose	+	I	+	+	+	ı	+	+	+
Raffinose		+	-/+	I	ı	+	+	ı	I
Rhamnose	+	+	+	+	+	+	+	-/+	+
Xylose	+	+	+	+	+	+	+	I	+
			Utiliz	Utilization of amino acids	acids				
Cysteine	+	+	+	+	ı	I	+	+	+
Glutamine	+	+	+	+	+	+	+	+	+
Hydroxyproline	+	+	+	+	ı	ı	+	ı	+
Phenylalanine	+	+	+	+	ı	ı	+	+	+
Tryptophan	+	+	+	+	ı	ı	+	+	+
Valine	+	+	+	+	ı	ı	+	+	+

2254

DAS et al.: PRODUCTION OF L-GLUTAMINASE BY Streptomyces rochei

Isolates	Coloration at different incubation period (h)							
	24	48	72	96	120	144		
DMM - 2	-	-	+	+	+	+		
DMM - 8	-	+	++	++	+++	+++		
DMM - 10	-	-	+	++	+++	+++		
DMM - 11	-	+	+	+	+	+		
DMM - 12	-	-	+	+	+	+		
DMM - 13	-	+	+	+	+	+		
DMQ - 13	-	+	+++	+++	+++	+++		
DMQ - 14	-	+	++	+++	+++	+++		
DMS - 3	-	+	+	+	++	++		

Table 2. Qualitative screening ofStreptomyces for the synthesis of L-glutaminase

+++: High; ++: Moderate; +: Low; -: No colour

Table 3. Effect of pH on the production of L-glutaminase by Streptomyces

рН		Enzyr	ne activity (IU)) at different fer	mentation Peri	od (h)	
	24	48	72	96	120	144	168
7.0	$2.6\pm\ 0.02$	3.2 ± 0.59	5.16 ± 0.03	5.85 ± 0.04	6.64 ± 0.04	6.16 ± 0.03	5.75 ± 0.04
7.5	3.5 ± 0.025	4.3 ± 0.025	5.46 ± 0.03	5.76 ± 0.025	6.57 ± 0.02	6.33 ± 0.035	5.46 ± 0.02
8.0	$3.8\ \pm 0.025$	5.5 ± 0.025	6.3 ± 0.02	7.8 ± 0.02	9.9 ± 0.025	8.7 ± 0.02	8.2 ± 0.025
8.5	$3.7\ \pm 0.025$	5.7 ± 0.025	6.6 ± 0.025	7.3 ± 0.025	8.5 ± 0.025	8.2 ± 0.025	7.7 ± 0.025
9.0	$3.5\ \pm 0.011$	5.5 ± 0.015	6.2 ± 0.017	7.2 ± 0.01	8.2 ± 0.02	8.1 ± 0.025	7.5 ± 0.02

Table 4. Effect of temperature on the production of L-glutaminase by Streptomyces

Temp.		Enzyr	ne activity (IU)	at different fer	rmentation Perio	od (h)	
(°C)	24	48	72	96	120	144	168
30 35 40	$\begin{array}{c} 3.7 \pm 0.200 \\ 4.3 \pm 0.025 \\ 5.3 \pm 0.010 \end{array}$	$\begin{array}{c} 4.3 \pm 0.020 \\ 4.6 \pm 0.025 \\ 6.5 \pm 0.011 \end{array}$	$\begin{array}{c} 4.7 \pm 0.035 \\ 6.7 \pm 0.025 \\ 7.8 \pm 0.025 \end{array}$	$\begin{array}{c} 6.3 \pm 0.025 \\ 7.9 \pm 0.020 \\ 9.2 \pm 0.015 \end{array}$	$\begin{array}{c} 8.3 \pm 0.030 \\ 9.5 \pm 0.020 \\ 12.3 \pm 0.010 \end{array}$	$\begin{array}{c} 7.7 \pm 0.035 \\ 8.8 \pm 0.023 \\ 10.5 \pm 0.015 \end{array}$	$\begin{array}{c} 6.3 \pm 0.025 \\ 7.9 \pm 0.020 \\ 9.2 \pm 0.015 \end{array}$
45 50	$\begin{array}{c} 3.5\pm0.015\\ 4.5\pm0.020\end{array}$	$\begin{array}{c} 5.9 \pm 0.025 \\ 3.9 \pm 0.025 \end{array}$	$\begin{array}{l} 7.2 \pm 0.015 \\ 5.3 \pm 0.020 \end{array}$	$\begin{array}{c} 8.6\pm0.025\\ 6.7\pm0.02\end{array}$	$\begin{array}{c} 11.9 \pm 0.003 \\ 10.4 \pm 0.015 \end{array}$	$\begin{array}{c} 10.6\pm 0.025\\ 8.2\pm 0.020\end{array}$	$\begin{array}{c} 8.6\pm0.025\\ 6.7\pm0.020\end{array}$

Table 5. Effect of inoculum size on the production of L-glutaminase by Streptomyces

Inoculum	Enzyme activity (IU) at different fermentation Period (h)							
size	24	48	72	96	120	144	168	
1×10 ⁵	3.3± 0.15	3.9± 0.02	3.7 ± 0.02	4.3± 0.015	6.9 ± 0.02	5.7 ± 0.02	5.2± 0.02	
1×10^{6}	$4.9{\pm}~0.02$	$5.3{\pm}0.016$	$5.9{\pm}0.025$	6.3 ± 0.02	7.9 ± 0.02	7.2 ± 0.02	6.5 ± 0.02	
1×10^{7}	5.5 ± 0.03	$6.3{\pm}~0.015$	7.2 ± 0.02	$8.5{\pm}\ 0.015$	$12.2{\pm}\ 0.005$	11.8 ± 0.015	$10.5{\pm}\ 0.015$	
1×10^{8}	6.2 ± 0.015	$8.5{\pm}0.015$	$11.2{\pm}~0.010$	$11.7{\pm}~0.015$	$13.5{\pm}\ 0.015$	$12.8{\pm}\ 0.015$	$12.5{\pm}\ 0.015$	
1×10 ⁹	$5.5{\pm}\ 0.015$	$6.2{\pm}~0.025$	$6.8{\pm}0.015$	$6.5{\pm}~0.015$	$8.7{\pm}~0.01$	$8.3{\pm}~0.01$	$7.5{\pm}~0.015$	

Agitation	Enzyme activity (IU) at different fermentation Period (h)								
(rpm)	24	48	72	96	120	144	168		
140	3.6± 0.2	4.1± 0.41	4.2± 0.203	5.0± 0.59	7.1 ± 0.148	6.0± 0.036	5.4 ± 0.598		
160	3.9 ± 0.015	$4.7{\pm}~0.005$	4.5 ± 0.01	5.9 ± 0.15	$6.9{\pm}~0.02$	$6.3{\pm}0.598$	5.4 ± 0.01		
180	$4.3{\pm}~0.015$	4.9 ± 0.02	5.6 ± 0.02	$6.3{\pm}~0.02$	7.6 ± 0.02	$6.5{\pm}~0.015$	$6.1{\pm}0.015$		
200	5.8 ± 0.02	6.3 ± 0.02	$8.9{\pm}~0.02$	$9.9{\pm}~0.02$	$15.8{\pm}~0.02$	$12.7{\pm}~0.02$	7.3 ± 0.02		
220	$4.7{\pm}~0.03$	$5.1{\pm}~0.02$	$8.5{\pm}~0.02$	$9.7{\pm}~0.02$	14.5±0.015	$15.3{\pm}~0.015$	$12.5{\pm}~0.025$		

Table 6. Effect of agitation on the production of L-glutaminase by Streptomyces

phylogenetic tree. The phylogenetic tree (Fig. 6) reveals that, the test isolate *Streptomyces* DMQ - 14 has got 99.00% similarity with the type strain *Streptomyces rochei* NR041091 indicating the confirmation of the potential strain as *Streptomyces rochei*. GenBank accession number for the nucleotide sequence of the potential isolate is JQ889270.

DISCUSSION

Isolation and screening

The literature available is limited to the isolation and screening of bacteria and fungi only (Jeyaprakash *et al.*, 2010; Iyer and Singhal, 2010) for the synthesis of L-glutaminase. Very few cultures of actinomycetes have been isolated from

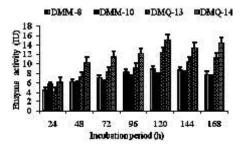


Fig. 1. Screening of Streptomyces for the production of L-glutaminase

BGiuceae EFractose EMaltore EManuitol EkStroch

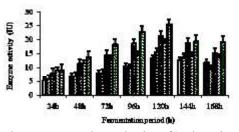


Fig. 2. Effect of carbon sources on the production of L-glutaminase by Streptomyces

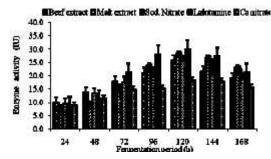


Fig. 3. Effect of nitrogen sources on the production of L-glutaminase by Streptomyces

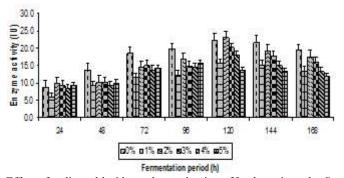


Fig. 4. Effect of sodium chloride on the production of L-glutaminase by Streptomyces

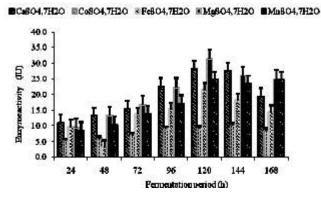


Fig. 5. Effect of metal ions on the production of L-glutaminase by Streptomyces

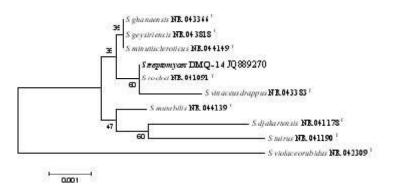


Fig. 6. Phylogenetic tree of the potential isolate of Streptomyces DMQ - 14

different sources by several researchers aiming at the production of L-glutaminase. Actinomycetes isolated from marine water (Sivakumar *et al.*, 2006; Krishnakumar *et al.*, 2011) and mangrove samples (Balagurunathan *et al.*, 2010) for the production of L-glutaminase were reported from India. Detection and biotechnological exploration of several actinomycetes were reported (Dastager *et al.*, 2007; Vishalakshi *et al.*, 2009; Ameena *et al.*, 2010; Syed and Dayanand, 2012a, 2012b) from our research laboratory. In the present study, actinomycetes were isolated and screened for the synthesis and production of L-glutaminase. An isolate of *Streptomyces* DMQ-14 obtained from the soil of limestone quarry was proved to be efficient, $(15.1\pm0.03 \text{ IU})$ for the synthesis of L-glutaminase. The harsh environment and typical physiological conditions of limestone quarries proved to be a 2258

good ecological niche for the prominent and potential isolate of actinomycetes.

Process optimization

A batch wise bioprocess was optimized with important physicochemical and nutritional variables for the production of L-glutaminase under submerged system. Several reports are available on the process standardization by submerged system (Iyer and Singhal, 2010; Jeyaprakash et al., 2010) and solid state system (Prabhu et al., 1997; Pandey et al., 2003) for the production of Lglutaminase by employing either bacterial or fungal cultures. Relatively, not much information is available regarding the production of Lglutaminase by actinomycetes. The pH 8.0, temperature 40°C, agitation 200 rev/min and 1x108 spores/ml inoculums size were proved to be optimum for the maximum production of Lglutaminase under submerged system by Streptomyces DMQ-14. Agitation and aeration were considered (Banik et al., 2011) as most critical parameters used for process scale-up and determination of productivity of enzyme. Actinomycetes being filamentous, sporulating and highly aerobic naturally performs better in these conditions. Incorporation of several carbon sources had shown enhanced activity from 23.0±0.05 IU to 25.42±0.04 IU. Among them, starch promoted the maximum activity $(25.42\pm0.04 \text{ IU})$ compared to other sources. This result similarizes very rare in recent surveyed literatures indicating a natural adaptation of the organism to the carbon source already used in the said medium all over the process. The same source is also used in another literature tested with Pseudomonas sp. in submerged fermentation where it showed better activity (Jyoti et al., 2011). Maltose (21.29±0.05 IU) is the second best source for the production of L-glutaminase and almost equivalent to mannitol $(19.03\pm0.05 \text{ IU})$. This result is quite befitting with the report of Sivakumar et al. (2006). But, to our surprise, the activity of glucose (13.29±0.041 IU) contradicts with the literature pertaining to the influence of carbon sources (A patent: Yuasa et al., 1999), dealing with the production of Lglutaminase by an yeast. It appears that, glucose acts as a repressor or very slowly assimilated in the medium than the other carbon sources. Nitrogen can be an important limiting factor for the microbial production of enzymes (Chandrasekaran

J PURE APPL MICROBIO, 7(3), SEPTEMBER 2013.

et al., 2000). L-glutamine act as the optimum nitrogen source (30.24±0.01 IU) among all sources tested indicating quite similar results with the previous researchers (Prabhu et al., 1997; Krishnakumar et al., 2011) and very recently by Thadikamala et al. (2011). It depicts that, indeed the amide nitrogen of glutamine was source of amino groups in a wide range of biosynthetic processes and it also frequently involved in protein active or binding sites (Jeyaprakash et al., 2010). Next suitable source was malt extract (28.3±0.02 IU) which similarizes with the value of 16.6 IU by Krishnakumar et al. (2011) and 15.61 IU by Sivakumar et al. (2006). Sodium nitrate (25.5±0.02 IU) found to be the optimum source among inorganic nitrogen sources for L-glutaminase production which is quite similar with the results of Vibrio sp. reported by Jeyaprakash et al. (2010) and Aspergillus sp. by Prasanth et al. (2009). Malt and beef extract are not much significantly higher in values from each other, that is guite equivalent as organic nitrogen source. It is also supported with the literature of Sivakumar et al. (2006) being tested with actinomycetes. While, calcium nitrate has shown least value (18.3±0.03 IU) for optimum production of L-glutaminase, whereas it is promoting a good yield in case of production of Lglutaminase by actinomycetes (Sivakumar et al., 2006). Among metal ions tested, magnesium sulphate proved to be the optimum one in comparison to other metal ions tested and it also similarizes with the observations of Jeyaprakash et al. (2010) for the production of L-glutaminase by Vibrio sp. Whereas, CoSO (10.03±0.03 IU) had the least effect on the production of L-glutaminase indicating its role as suppressor for the yield of Lglutaminase in submerged fermentation as well as a poor growth inducing cofactor.

Characterization

Characterization and confirmation of any potential isolate is very important and essential before it is being submitted to the culture deposit centers. Although, the potential isolate of an actinomycete DMQ-14, was confirmed as the genus *Streptomyces* based on morphological, biochemical and physiological properties, molecular characterization was essential to confirm its species level. The molecular characterization by 16S rDNA gene sequence reveals that, 1417 nucleotide base pairs consisting of Adenine -22.4%, Guanine – 33.9%, Cytosine – 25.7% and Thymine -18.0%; with AT:GC ratio of 40.4:59.6. Blast analysis denoted 99.00% similarity to *Streptomyces rochei* family. Thus, confirming the potential isolate DMQ-14 as *Streptomyces rochei*.

CONCLUSIONS

The present study reveals that, limestone quarries would be the better ecological niche for the occurrence of potential actinomycetes. *Streptomyces rochei* DMQ-14 proved to be relatively a potential strain for the production of Lglutaminase under submerged system in comparison with any of the reported isolates of actinomycetes. The modified basic starch casein medium as starch glutamine mineral medium proved to be the best for the production of Lglutaminase. Halo tolerant nature of the enzyme would be advantageous as a potent commercially and industrially applicable L-glutaminase, which requires to be explored further.

ACKNOWLEDGEMENTS

The first author is grateful to Jawaharlal Nehru Memorial Fund (JNMF) Organization, New Delhi for providing Research Fellowship to carry out the present work as doctoral studies.

REFERENCES

- Archibald, R. M., Preparation and assay of glutaminase for glutamine determinations, *J. Biol. Chem.*, 1944; 657-667.
- 2. Prusiner, S.,, Davis, J.N., Stadtman, E.R. Regulation of Glutaminase B in *E. coli. Journal* of Biological Chemistry., 1976; **251**: 3447-3456.
- Jyoti Hiremath., Shivaveerakumar., Vandana Rathod., Production of L-glutaminase by *Pseudomonas* VJ-6. *Research Journal of Biotechnology.*, 2011; 6(3): 42-49.
- Imada, A., Igarasi, S., Nakahama, K., Isono, M. L-asparaginase and glutaminase activities of microorganisms. *Journal of General Microbiology.*, 1972; 76: 85-99.
- 5. Jeyaprakash, P., Poorani, E., Anantharaman, P. Effect of media composition on L- glutaminase production from Lagoon *Vibrio* sp. SFL-2. *International Journal of Biotechnology and Biochemistry.*, 2010; **6**(5): 769-782.
- 6. Sivakumar, K., Maloykumar Saha., Munivel,

P.R., Kannan, L. Optimum condition for Lglutaminase production by Actinomycetes strains isolated from estuarine fish *Chanos chanos* (Forskal, 1775). *Indian Journal of Experimental Biology*., 2006; 44: 256-258.

- Abdallah, N.A., Amer, S.K. and Habeeb, M.K. Screening of L-glutaminase produced by actinomycetes isolated from different soils in Egypt. 4(4): 1451-1460.*International Journal* of ChemTech Research., 2012; 4 (4): 1451-1460.
- Muthuvelayudhum, R., Kumar Suresh, S., Viruthagiri, T. Medium optimization for production of L-glutaminase (EC 3.5..1.2) by *Streptomyces griseus* under submerged fermentation. International Journal of Science and Engineering Applications (IJSEA), 2013; 2(1): 1-5.
- Iyer, P., Singhal, S. Glutamine production using Zygosaccharomyces rouxii NRRL-Y2547: Effect of aeration, agitation, regimes and feeding strategies. Journal of Chem. Eng. Technol., 2010; 313(1): 52-62.
- Thadikamala Sathish ., Reddy Shetty Prakasha. Modeling the effect of L-glutamine, aeration and agitation regimes on production of L-glutaminase in stirred tank reactor using *Bacillus subtilis* RSPglu. *International Journal of Industrial Biotechnology.*, 2011; 1(1):27-33.
- 11. Masuo Naohisa, Yoshimune Kazuaki, Ito Kotaro, Matsushima Kenchiro, Koyama Yasuji and Moriguchi Mitsuaki. *Micrococcus luteus* K-3type glutaminase from *Aspergillus oryzae* RIB40 is salt-tolerant. *Journal of Bioscience and Bioengineering.*, 2005; **100**(5):576-578.
- Nandakumar, R., Yoshimune, K., Wakayama, M., Moriguchi, M. Microbial glutaminase: biochemistry, molecular approaches and applications in the food industry. J. Mol. Cat. B: Enzymatic., 2003; 23: 87-100.
- Kumar, S.R., Chandrasekaran, M. Continuous production of L-glutaminase by an immobilized marine *Pseudomonas* sp. BTMS-51 in a packed bed reactor. *Proc. Biochem.*, 2003; **38**: 1431– 1436.
- Kashayap, P., Sabu, Pandey, A., Soccol, C.R. Extracellular L-glutaminase production by Zygosaccharomyces rouxii under solid state fermentation. Process Biochem., 2002; 38: 307-312.
- Renu, S., Chandrasekaran, M. Extracellular Lglutaminase production by marine bacteria. *Biotechnol. Lett.*, 1992; 13: 471-474.
- 16. Pandey, A. Solid-state fermentation. *Biochem. Eng. J.*, 2003; **13**: 81.
- 17. Dastager G. Syed., Wen Jun Li., Dayanand Agsar., Mudgulkar B. Sulochona. *Streptomyces*

gulbargensis sp. nov., isolated from soil in Karnataka, India. Antonie van Leewenhoek., 2007a. ;**91**: 99-104.

- Dastager, G. Syed., Dayanand Agsar., Wen Jun Li. *Streptomyces tritolerans* sp. nov., a novel actinomycete isolated from soil in Karnataka, India. Antonie van Leewenhoek., 2007b;**92**: 391-397.
- Dastager G. Syed., Dayanand Agsar., Wen Jun Li. Streptomyces deccanensis sp. nov., an alkaliphilic species isolated from soil. International Journal of Systematic and Evolutionary Microbiology., 2008; 58(5): 1089-1093.
- Vishalakshi, N., Lingappa, K., Amena, S., Prabhakar, M. Production of alkaline protease from *Streptomyces gulbargensis* and its application in removal of blood stains. *Indian Journal of Biotechnology.*, 2009; 8:280-285.
- Amena, S., Vishalakshi, N., Prabhakar, M., Dayanand, A., Lingappa, K. Production, purification and characterization of Lasparaginase from *Streptomyces gulbargensis*. *Brazilian Journal of Microbiology.*, 2010; 41: 173-178.
- 22. Kuster, E. Morphological and physiological aspects of the taxonomy of *Streptomyces*. *Microbiologia-esp.*, 1963; **16**:193.
- Shirling, E.B., Gottlieb, D. Methods for characterization of *Streptomyces* sp. *Int. J. Syst. Bacteriol.*, 1966; 16: 313-340.
- Buchanan, R.E., Gibbobs, N.E. (ed): Bergey's manual of determinative bacteriology, 8th edn. the Williams and Wilkins Co: Baltimore, 1974; pp 747-842.
- 25. Gulati, R., Saxena, R.K.., Gupta, R. A rapid plate assay for screening L-asparaginase producing microorganisms, *Letters in Applied Microbiology.*, 1997; **24**: 23-26.
- Krishnakumar, S., Alexis Rajan, R., Ravikumar, S. Extracellular production of L-glutaminase by marine alkalophilic *Streptomyces* sp. – SBU 1 isolated from Cape Comorin coast. *Indian Journal of Geo Marine Sciences.*, 2011; 40(5): 717-721.
- 27. Rintala., Merja Kontro. *Mol. Cell Probos.* 2001;15:337-347.
- Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G. The clustalx windows interface: flexible strategies for multiple

sequence alignment aided by quality analysis tools. *Nucleic Acids Res.*,1997; **25**: 4876–4882.

- Tamura, K., Nei, M., Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. In: Proceedings of the National Academy of Sciences (USA), 2004;101: pp11030-11035.
- Balagurunathan, R., Radhakrishnan, M., Somasundaram, S.T. L-glutaminase producing actinomycetes from marine sediments – selective isolation, semi quantitative assay and characterization of potential strain. *Australian Journal of Basic and Applied Sciences*. 2010; 4(5),:698-705.
- 31. Syed Raziuddin Quadri., Dayanand Agsar. Detection of melanin producing thermoalkaliphilic *Streptomyces* from limestone quarries of the Deccan traps. *World Journal of Science and Technology.*, 2012a; **2**(2):08-12.
- 32. Syed Raziuddin Quadri., Dayanand Agsar. Antimicrobial attributes of rare actinobacteria detected from limestone quarries. *International Journal of Pharma and Biosciences (IJPBS).*, 2012b; **3**(3): 137-147.
- Prabhu, G. N., Chandrasekaran, M. Impact of process parameters on L- glutaminase production by marine *Vibrio costicola* in solid state fermentation using polystyrene as an inert support. *Process Biochemistry.*, 1997; **32**: 285-289.
- Banik Rathidra Mohan., Singh Priyanka. Optimization of agitation and aeration rate for maximum production of L-glutaminase by *Bacillus cereus* MTCC 1305. *International Journal of Research*. 2011; 2: 14.25.
- Yuasa, Ari, J.P., Okamura, Hideki, J.P., Kataoka, Jiro, J.P., 1999. A patent. Application number: SPi 19990913660. Publication date: 01.31.2001. Filing date: 04.14. Microbial culture with enhanced glutaminase activity and utilization there of.
- Chandrasekaran, M., Sabu., A., Keerthi, T.R., Rajeevkumar, S. L-glutaminase production by marine *Beauveria* sp. under solid state fermentation. *Process Biochemistry.*, 2000; 35: 70-710.
- Prasanth Kumar, K., Prabhakar, T., Satish, T., Studies on extracellular L-glutaminase production by halophilic *Aspergillus* sp., *Journal of Pharmacy and Chemistry*. 2009; 3(3): 4-7.