
A novel evolutionary computation
technique called bacterial foraging optimization
(BFO) has been proposed recently1-2. In this
scheme, the foraging (methods for locating,
handling, and ingesting food) behavior of E. coli
bacteria present in our intestines is mimicked. They
undergo different stages such as chemotaxis,
swarming, reproduction, and elimination and
dispersal. In the chemotaxis stage, it can have
tumble followed by a tumble or a tumble followed
by a run. On the other hand, in swarming, each E.
coli bacterium will signal other via attractants to
swarm together. Furthermore, in reproduction the
least healthy bacteria die and the other healthiest
bacteria each split into two bacteria, which are
placed in the same location. Besides, in elimination
and dispersal, any one bacterium is eliminated from
the total set just by dispersing it to a random
location on the optimization domain.

Due to its simplicity and efficiency, the
BFO algorithm has been applied to solve many
practical optimization problems. Until now, BFO
has been applied successfully to some engineering
problems, such as constrained optimization

problems, neural networks and clustering3-6. As
mentioned above, the original version of BFO
algorithm is only able to optimize continuous
problems. However, many optimization problems
are set in a space featuring discrete, qualitative
distinctions between variables and between levels
of variables. Typical examples include problems
which require the ordering or arranging of discrete
elements, as in scheduling and routing problems.
Besides these pure combinatorial problems,
researchers frequently cast floating-point problems
in binary terms, and solve them in a discrete
number space. As any problem, discrete or
continuous, can be expressed in a binary notation,
it is seen that an optimizer which operates on two-
valued functions might be advantageous. Hence,
this paper aims at developing a novel binary
bacterial foraging optimization with adaptive
strategy, which can solve general binary
optimization benchmarks and more complex real-
word discrete problems. In the proposed BABFO,
we develop a differential expression, in which the
relevant variables are interpreted in terms of
changes of probabilities that changed each
iteration. The main feature of this new operator is
that it works in binary space, while still maintains
the major characteristics of the original BFO’s
expression. In addition, in order to improve the
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convergence speed and accuracy, the adaptive
strategy is applied in the proposed model.

The rest of the paper is organized as
follows. Section 2 gives a simple description of
classical BFO. Section 3 motivates and describes
the BABFO algorithm. Section 4 presents the
experimental settings and results for each algorithm.
Section 5 concludes the paper.
Bacterial  Foraging Optimization

Natural selection tends to eliminate
animals with poor foraging strategies and favor
the propagation of genes of those animals that
have successful foraging strategies, since they are
more likely to enjoy reproductive success. After
many generations, poor foraging strategies are
either eliminated or shaped into good ones. Similar
social foraging capabilities have also been a source
of inspiration to some authors in the area of
distributed Optimization and Control.

Based on the biology and physics
underlying the foraging behavior of E. coli
bacteria, Passino and Liu1 exploit a variety of
bacterial swarming and social foraging behaviors,
discussing how the control system on the E. coli
dictates how foraging should proceed. In the
bacterial foraging process, four motile behaviors
(chemotaxis, swarming, reproduction, elimination
and dispersal) are mimicked.

Chemotaxis: a chemotactic step can be
defined as a tumble followed by a tumble or a tumble
followed by a run lifetime. To represent a tumble, a
unit length random direction, say, (j) is generated;
this will be used to define the direction of movement
after a tumble. In particular

...(1)

where  i(j,k,l) represents the

ith bacterium at jth chemotactic kth reproductive

and lth elimination and dispersal step. C(i) is the
size of the step taken in the random direction
specified by the tumble (run length unit).
Swarming

E.coli cells can cooperatively self-
organize into highly structured colonies with
elevated environmental adaptability using an
intricate communication mechanism (e.g. quorum-
sensing, chemotactic signaling and plasmid
exchange). Roughly speaking, the cells provide an
attraction signal to each other so they swarm

together. The mathematical representation for
swarming can be represented by

...(2)

Where J
cc

 ,P(j,k,l) is the cost function
value to e added to be added to the actual cost
function to be minimized to present a time varying
cost function, S is the total number of bacteria, p is
the number of parameters to be optimized which
are present in each bacterium, and

are different

coefficients that are to be chosen properly.
Reproduction

The least healthy bacteria die and the
other healthier bacteria each split into two bacteria,
which are placed in the same location. This makes
the population of bacteria constant.
Elimination and Dispersal

It is possible that in the local environment,
the lives of a population of bacteria changes either
gradually (e.g., via consumption of nutrients) or
suddenly due to some other influence. Events can
occur such that all the bacteria in a region are killed
or a group is dispersed into a new part of the
environment. They have the effect of possibly
destroying the chemotactic progress, but they also
have the effect of assisting in chemotaxis, since
dispersal may place bacteria near good food
sources. From a broad perspective, elimination and
dispersal are parts of the population-level long-
distance motile behavior.
Binary Adaptive Bacterial Foraging Optimization
The position clipping boundary condition

In order to restrict the bees’ positions
within the range [0,1], A normalization method and
a threshold level has to be introduced to map all
real valued numbers of i(j,k,l) to the range [0,1].
The round function and the position clipping
boundary condition (PCBC) can be used to
accomplish this last modification. The resulting
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change in position then is defined by the following
rule:

...(5)

Here the ( )round   function rounds the

elements of each bacterium to the nearest integers,
d is the dimension number of each bacterium, and
the PCBC strategy handles the bounded search
space. Once the new food source i(j+l,k,l) is
obtained, it will be evaluated and compared to
i(j,k,l). If the fitness of  i(j+l,k,l is equal to or
better than that of  i(j,k,l), i(j+l,k,l  will replace
and become a new member of the population;
otherwise is retained. In other words, a greedy
selection mechanism is employed as the selection
operation between the old and the current food
sources.
Self-adaptive strategy

In BABFO evolution process, each
bacterium displays alternatively two distinct
search states8:
(1) Exploration state, during which the bacterium

employs a large run-length unit to explore the
previously unscanned regions in the search space
as fast as possible.

(2) Exploitation state, during which the bacterium
uses a small run-length unit to exploit the
promising regions slowly in its immediate
vicinity.

Each bacterium in the colony permanently
maintains an appropriate balance between
Exploration and Exploitation states by varying
its own run-length unit adaptively. This is achieved
by taking into account two decision indicators: a
fitness improvement and no improvement
registered lately. The criteria that determine the
adjustment of individual run-length unit and the
entrance into one of the states are the following:
Criterion-1: if the bacterium discovers a new
promising domain, the run-length unit of this
bacterium is adapted to another smaller one. Here
“discovers a new promising domain” means this
bacterium register a fitness improvement beyond
a certain precision from the last generation to the
current. Following Criterion-1, the bacterium’s
behavior will self-adapt into Exploitation state.
Criterion-2: if the bacterium’s current fitness is
unchanged for a number K

 
(user-defined) of

consecutive generations, then augment this
bacterium’s run-length unit and this bacterium

Table 1. Results comparison of three algorithms on Goldberg for 30 runs

BABFO BPSO BGA

D Best Mean Stardard Best Mean Stardard Best Mean Stardard
fitness fitness deviation fitness fitness deviation fitness fitness deviation

30 0.0900 0.1840 0.0699 0.1000 0.3867 0.1432 0.2000 0.4700 0.1418
60 0.2250 0.5760 0.2752 0.6000 0.9900 0.2090 0.6000 1.1700 0.2842
90 0.2800 1.6173 0.6929 1.0000 1.5567 0.2402 1.2000 2.0567 0.4321
120 0.3075 2.6713 1.2235 1.6000 2.1867 0.3014 2.3000 3.3267 0.4510

Table 2.  Results comparison of three algorithms on Bopilar for 30 runs

BABFO BPSO BGA

D Best Mean Stardard Best Mean Stardard Best Mean Stardard
fitness fitness deviation fitness fitness deviation fitness fitness deviation

30 0.1200 0.1750 0.0285 0 0.4067 0.1530 0.6000 0.7600 0.1429
60 0.2100 0.2600 0.0186 1 1.4600 0.2472 1.4000 1.8000 0.1576
90 0.2800 0.2990 0.0124 2.0000 2.5333 0.2537 2.2000 2.6667 0.2057
120 0.2625 0.3212 0.0199 3.0000 3.5333 0.2591 3.0000 3.6600 0.2581
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enters Exploration state. This situation means that
the bacterium searches on an un-promising domain
or the domain where this bacterium focuses its
search has nothing new to offer.
Numerical Examples And Results

In order to fully evaluate the performance
of BABFO on discrete problems, we have employed
a carefully chosen set of discrete benchmark
functions7 as follows:
Golderg’s order-3

The fitness f of a bit-string is the sum of
the result of separately applying the following
function to consecutive groups of three
components each:

...(4)

If the string size (i.e. the dimension of the
problem) is D, the maximum value is D/3 for the
string 111…111. In practice, we will then use as
fitness the value D/3-f so that the problem is now
to find the minimum 0.

Bipolar order-6
The fitness f is the sum of the result of

applying the following function to consecutive
groups of six components each:

...(5)

The maximum value is D/6. In practice,
we will use as fitness the value D/6-f so that the
problem is now to find the minimum 0.
Mulenbein’s order-5

The fitness f is the sum of the result of
applying the following function to consecutive
groups of five components each:

...(6)

Table 4. Results comparison of three algorithms on Clerc's Zebra-3 for 30 runs

BABFO BPSO BGA

D Best Mean Stardard Best Mean Stardard Best Mean Stardard
fitness fitness deviation fitness fitness deviation fitness fitness deviation

30 0 0 0 0.1000 0.3567 0.1194 0.2000 0.4833 0.1392
60 0 0 0 0.6000 0.9967 0.2109 0.7000 1.2067 0.2363
90 0 0 0 0.9000 1.6267 0.2935 1.3000 1.9067 0.3433
120 0 0 0 1.5000 2.1300 0.2984 1.8000 3.1433 0.6191

Table 3.  Results comparison of three algorithms on Muhlenbein for 30 runs

BABFO BPSO BGA

D Best Mean Stardard Best Mean Stardard Best Mean Stardard
fitness fitness deviation fitness fitness deviation fitness fitness deviation

30 0 0 0 0 0.8500 0.5594 0 1.3833 1.7747
60 0 0 0 0 1.5167 0.8457 0.5000 4.6833 2.4300
90 0 0 0 1 3.2000 1.6744 4.5000 11.916 4.6887
120 0 0 0 3 7.3000 2.8545 12 19.650 5.3902
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Fig. 2. Bipolar order-6 functionFig. 1. Goldberg order-3 function

Fig. 3. Multimodal problem Fig. 4. Clerc Zebra-3 function

The maximum value is 3.5D/5. In practice,
the value 3.5D/5-f is use as the fitness so that the
problem is now to find the minimum 0.
Clerc’s Zebra-3

The fitness f is the sum of the result of
applying the following function to consecutive
groups of three components each, if the rank of
the group is even (first rank = 0):

...(7)

If the rank of the group is odd:

...(8)

In practice, we will then use as fitness the
value D/3-f so that the problem is now to find the
minimum 0.

For comparison, the proposed BABFO,
the binary version of GA8 and PSO9 were tested
on these benchmark functions. The population size
for all algorithms was set at 120. The max generation
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of each run is 1000. For BABFO, we take P
ed

=0.25,
N

c
=100, N

s
=4, N

re
=5 and N

ed
=2, then BABFO

performs totally 1000 chemotactic steps in each
run, which make a fair comparison in regard of the
parameter values. For BGA, single point crossover
operation with the rate of 0.8 was employed and
mutation rate was set to be 0.01. For BPSO, the
learning rate parameters were set to the values c

1
=

c
2
=2 and the inertia weight w=1.

In this experiment, all algorithms are
tested on 30, 60, 90 and 120 dimensions of each
benchmark function, respectively. The experimental
results, including the best, mean and standard
deviation of the function values found in 30 runs
are proposed in Table 1-4. The mean convergence
results of 4 functions with 120 dimensions are
showed in Fig.1-4.

From the results, we can observe that
BABFO obtain an obviously remarkable
performance. It can be seen from Fig. 1-4 that
BABFO converged greatly faster and to
significantly better results - the minimum of
functions f

1
 ~ f

4
 - than BGA and BPSO for all discrete

cases.

CONCLUSIONS

Since the original BFO algorithm cannot
be directly applied to solve discrete problems, this
paper proposed a novel discrete bacterial foraging
algorithm - BABFO, which works in binary space,
while still maintains the major characteristics of
the original BFO’s expression. From the simulation
results, it is concluded that the performance of the
proposed algorithm is better than BGA and BPSO
on four benchmark functions.

The Future work should focus on how
practically useful the BABFO algorithm are for
engineering optimization problems. These depend
on extensive evaluation on many benchmark
functions and real-world problems.
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