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In this work, a novel approach called multi-objective multi-colony bacterial
foraging algorithm for multi-objective optimization (M*BFO) is proposed. The proposed
M?BFO extend original bacterial foraging optimization (BFO) algorithm to multi-objective
and cooperative mode by combining external archive and cooperative search strategy.
Our algorithm uses the concept of Pareto dominance to determine the swim direction of
a bacterium and maintains nondominated solution vectors in external archive based on
greedy selection and crowing distance strategies. With cooperative search approaches,
the single population BFO has been extended to interacting multi-colony model by
constructing colony-level interaction topology and information exchange strategies.
Simulation experiment of M?BFO on a set of benchmark test functions are compared with
other nature inspired techniques which includes nondominated sorting genetic algorithm
II (NSGAIl) and multi-objective particle swarm optimization (MOPSO). The numerical
results demonstrate M*BFO approach is a powerful search and optimization technique
for multi-objective optimization problems.
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In many real-world optimization
applications, the decision maker (DM) is always
involving simultaneous optimization of several
objectives'. The solutions for these multi-objective
optimization problems (MOP) often result from both
the optimization and decision making process.
Generally, these objective functions are
noncommensurable and often competing and
conflicting.

Generally, a solution x, of the multi-
objective problem is said to be Pareto optimal if
there does not exist another solution x,, such that
f(x,) dominates f(x,). These optimal solutions are
called Pareto-optimal solutions. Multi-objective
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optimization problems consist of » decision
variables, m objective functions, p equality
constraints and ¢ inequality constraints. It can be
formulated as follows:

Minimize p = f(x) = [0, f00, - f (0].(D

gi(x) 20,
Bz =1,

where x = (x,, x,,..., x )€D is a decision
vector that represents a solution, y = (f,, f3,...,f,)-¥
represent objective functions, D is a n-dimensional
search space for decision vectors, and Y is a m-
dimensional search space for objective vectors.
The set of optimal trade-offs forms the solution
set which is called the Pareto set and it is denoted
by P*. The set PF"= { f(x) | xeP"} is called the
Pareto front.

i= 1,2,...’;1

)

Subject to:
f=1,2,00
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MOP provides many challenges to
optimization researchers, because the traditional
techniques like linear and non-linear programming
are unable to solve them efficiently. In recent years,
many nature inspired methods were designed to
deal with MOP problems. Over the past two decade,
a lot of successful multi-objective algorithms based
on such biologically inspired algorithms to
optimize multi-objective problems were proposed
in literature, such as Pareto-archived evolution
strategy (PAES) [2], Pareto envelope-based
selection algorithm (PESA)-II [3], nondominated
sorting genetic algorithm II (NSGAII)*, strength
Pareto evolutionary algorithm (SPEA2), indicator-
based evolutionary algorithm (IBEA)S, multi-
objective particle swarm optimization (MOPSO)’,
multi-objective evolutionary algorithm based on
Decomposition (MOEA/D)®, multi-objective
differential evolution (MODE) based on summation
of normalized objective values. The primary reason
for this is their ability to find multiple Pareto-optimal
solutions in one single simulation run.

In recent years, chemotaxis (i.e. the
bacterial foraging behavior) as a rich source of
potential engineering applications and
computational model has attracted more and more
attentions. A few models have been developed to
mimic bacterial foraging behavior and have been
applied for solving some practical problems among
them, Bacterial Foraging Optimization (BFO) is one
population-based numerical optimization algorithm
presented by Passino in the literature’. BFO is a
simple but powerful optimization tool that mimics
the foraging behavior of E. coli bacteria. Until now,
BFO has been applied successfully to some
engineering problems'?, such as optimal control,
harmonic estimation, transmission loss reduction
and machine learning. However, the original
version of BFO algorithm is only able to optimize
single objective problems.

The purpose of this paper is to develop a
multi-colony bacterial foraging algorithm for
solving the multi-objective problems. The proposed
M?BFO extends the single population BFO to
interacting multi-colony model by combing multi-
objective handling strategies and hierarchical
interaction topologies. In the proposed model, the
external archive, greedy selection, and crowding
distance strategies are employed to evaluate the
fitness of the food source positions and select
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nondominated solutions. In M?BFO, we implement
a hierarchical interaction topology that consists
oftwo levels (i.e. individual level and colony level),
in which information exchanges take place
permanently. Each bacterium of the multi-colony
model searches the food source based on the
information integration of its colony members and
its cooperative partners from other colonies.
Therefore, the advantages of the proposed multi-
colony model can be listed as: (1) it can improve
the population diversity; (2) it can fasten the
convergence speed; (3) it is easy to cooperate in
hybrid with another search technique/strategy. In
the experiment, we evaluate M*BFO on a set of
mathematical benchmark functions that including
two two-objective problems and two three-
objective cases, which have been widely employed
by other researchers to evaluate their MO
algorithms.

The remainder of this paper is structured
as follows. Sectionalintroduces the original
bacterial foraging algorithm. Section III describes
the details of the proposed approach for multi-
objective optimization. The numerical results of
the experiments and discussions are presented in
section c°. Finally, Sectiond V concludes the paper.
Bacterial Foraging Optimization

The classical Bacterial Foraging
Optimization system consists of three principal
mechanisms, namely chemotaxis, reproduction, and
elimination-dispersal®’. We briefly describe each of
these processes as follows:

Chemotaxis

In the classical BFO, a unit walk with
random direction represents a “tumble” and a unit
walk with the same direction in the last step
indicates a “run”. Suppose g'¢; .z represents the
bacterium at j chemotactic, k* reproductive, and
I" elimination-dispersal step. C(i) is the chemotactic
step size during each run or tumble (run-length
unit). Then in each computational chemotactic step,
the movement of the i” bacterium can be
represented as

e R s D
G +L kD=8 (kDO i O

where A(i) is the direction vector of the j*
chemotactic step. When the bacterial movement is
run, A(7) is the same with the last chemotactic step;
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otherwise, A(7) is a random vector whose elements
liein[-1, 1].

With the activity of run or tumble taken
at each step of the chemotaxis process, a step
fitness, denoted as J (i,/,k,/), will be evaluated.
Reproduction

The health status of each bacterium is
calculated as the sum of the step fitness during its
life,Le. ", 7tz,7 &8, where N_is the maximum step
in a chemotaxis process. All bacteria are sorted in
reverse order according to health status. In the
reproduction step, only the first half of population
survives and a surviving bacterium splits into two
identical ones, which are then placed in the same
locations. Thus, the population of bacteria keeps
constant.

Elimination and Dispersal

The chemotaxis provides a basis for local
search, and the reproduction process speeds up
the convergence which has been simulated by the
classical BFO. While to a large extent, only
chemotaxis and reproduction are not enough for
global optima searching. Since bacteria may get
stuck around the initial positions or local optima, it
is possible for the diversity of BFO to change either
gradually or suddenly to eliminate the accidents
of being trapped into the local optima. In BFO, the
dispersion event happens after a certain number
of reproduction processes. Then some bacteria are
chosen, according to a preset probability P,, to
be killed and moved to another position within the
environment.

Multi-objective Multi-colony Bacterial Foraging
Optimization
External Archive

As opposed to single-objective
optimization, multi-objective EA and SI techniques
usually maintain a nondominated solutions set. In
multi-objective optimization, for the absence of
preference information, none of the solutions can
be said to be better than the others. Therefore, in
MOABC algorithm, we use an external archive to
keep a historical record of the nondominated vectors
found along the search process®®.

In the initialization phase, the external
archive will be initialized. After initializing the
solutions and calculating the value of every
solution, they are sorted based on nondomination.
We compare each solution with every other
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solution in the population to find which one is
nondominated solution. We then put all
nondominated solutions into external archive £4.
The external archive will be updated at each
generation.
Greedy Selection Mechanism

In our algorithm, each bacterium will find
a new solution in each generation. If the new
solution dominates the original individual, then
the new solution is allowed to enter the external
archive. On the other hand, if the new solution is
dominated by the original individual, then it is
denied access to the external archive. If the new
solution and the original bacterium do not dominate
each other, then we randomly choose one of them
to enter the external archive. That is, after
producing new solutions in each generation, the
greedy selection mechanism is applied to decide
which solution enters £A.
Information Transfer Strategy

The whole bacterial community in
M2BFO is divided into several colonies, and each

o) (s
b2

Fig. 1. The sequence of information
transfer among colonies

colony performs a canonical paradigm. After some
predefined generations of optimization, each colony
will select some bacteria with superior information
for information transfer. The selected bacteria
comprise a list and the list will be sent to another
colony. On the other hand, each colony prepares a
replacement list comprised of bacteria which will
be replaced by bacteria coming from other colonies.
The sending list is prepared on the basis of the
following rules.
Rule-1

The first consideration in the selection of
bacteria is nondomination rank. The bacteria with
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the lower rank are preferred.
Rule-2

If the number of bacteria in the first rank
is greater than the predefined value of the size of
the sending list, the average hamming distance
and the crowding distance between each pair of
bacteria in the colony will be calculated. The closest
L bacteria to the individual that has the largest
average hamming distance from others will first
enter the sending list and then the bacteria with
larger crowding distance will be selected. L is a
value that depends on the size of the sending list
K and the exchange factor (0 < 6<1):

£=5><£—1 -(16)
t
Rule-3

If the number of bacteria in the first rank is
less than the predefined value of the size of the
sending list, the bacteria in the first rank will first
enter the sending list and then the remaining
members of the sending list are chosen from
subsequent nondominated fronts in the order of
their ranking. Ifthe bacteria are in the same rank, we
will prefer those with larger crowding distance. This
procedure is continued until no more individuals
can be accommodated in the sending list.

The replacement list that each colony
prepares is based on the nondomination rank and
crowding distance in the colony. The replacement
list is prepared on the basis of the following rules.
Rule-4: The bacteria in the last rank will be replaced
first and then the remaining members of the
sending replacement are chosen from previous
nondominated fronts in the reverse order of their
ranking.

Rule-5

If the bacteria are in the same rank, the
bacteria which are located in a lesser crowded
region will be replaced first.
Interaction Topology

The sequence of information transfer
among colonies is shown in Fig.1, which is a ring
sequential order among all colonies. Each colony
can accept the sending list from an adjacent colony
and the bacteria of its own replacement list will be
replaced with the bacteria of the received list.
Obviously, in our multiple colony model, the
interaction of bacteria occurred in a two-level
hierarchical topology. Many patterns of
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connection can be used in different levels of our
model.

EXPERIMENTAL

Settings and benchmark functions

To fully evaluate the performance of the
M?BFO algorithm without a biased conclusion
towards some chosen problems, we employed two
2-objective and two 3-objective benchmark
functions. The formulas of these functions are
presented below.
7DT1

This is a 30-variables (n=30) problem
having a convex Pareto optimal set. The fucntions
used are as follows:
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Fig. 2. M’BFO on ZDTI
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Fig. 3. NSGA-II on ZDT1
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where all variables lie in the range [0, 1].

The Pareto optimal region corresponds to 0 2 xl‘ <1

and x; =0 for i = 2,3,...,30).
ZDT2

This is also an »n=30 variable problem
having a nonconvex Pareto optimal set:

flal=a,
Fla1 =gl ~(x f g(a))]

gl -1+5‘(Zx_)f(n -1

Miznaze
Mizanaze

Lz .05

where all variables lie in the range [0, 1].
The Pareto optimal region corresponds to
0<x £land x, =0 for i =2,3,...,30.

DTLZ2
This test problem has a spherical Pareto-
optimal front:
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where the Pareto-optimal solutions corresponds

to x =03 (x__'Ex_,l) and all objective function

values must satisfy the z_:f_glif_,'.j" =l. As in the

previous problem, it is recommended to use
k=|x,|=10. The total number of variables is
n=M+k"1 is suggested.
DTLZ6

This test problem has 2*-1 disconnected
Pareto-optimal regions in the search space.

[
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where the functional g requires &=x, | decision
variables and the total number of variables is
n=M+k-1. It is suggested that £=20.

For the for benchmark functions used in
this paper, all the tested algorithm parameters were
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Fig. 4. MOPSO on ZDT1
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Fig. 6. NSGA-II on ZDT2
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set as follows: for M2BFO, the number of colonies
is set at 4, the population size of each colony N,
=20 and run step C(i)=0.1. For NSGA-II, the
population size, crossover and mutation
probabilities are selected as 400, 0.85 and 0.25,
respectively for the five benchmark functions. For
MOPSO, the population size, mutation rate and

Fig. 11. M?BFO on DTLZ6
J PURE APPL MICROBIO, 7(3), SEPTEMBER 2013.
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divisions for the adaptive grid are selected as 400,
0.5 and 30.

In order to facilitate the quantitative
assessment of the performance of a multi-objective
optimization algorithm, the convergence metric is
taken into consideration.
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Fig. 12. NSGA-II on DTLZ6
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RESULTS AND DISCUSSION

Simulations were conducted on the four
benchmark functions to analyze the performances
of the algorithms for multi-objective optimization.
The results were obtained from thirty independent
runs of M?BFO, NSGAII, and MOPSO. For the
experiments, the maximal number of fitness function
evaluations is 400000.
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Figs.2-7 show the optimal front obtained
by three algorithms for two objectives problems.
These figures show that M*BFO can discover a
well-distributed and diverse solution set for both
ZDT1 and ZDT2 problems. However, NSGA-II only
finds a sparse distribution, and it cannot archive
the true Pareto front for ZDT?2.

Figs.8-13 show the true Pareto optimal
front and the optimal front obtained by three
algorithms for DTLZ2 and DTLZ6. From the Figures,

Table 1. The Comparison Result of The covergence Metric

Function Item M?BFO NSGAII MOPSO
ZDT1 Avg. 63225e-004 1.4410e-001 2.1433e-002
Min. 5.5566¢e-004 7.2072e-002 1.7786e-002
Max. 1.1110e-003 8.7348e-001 2.3079e-002
Std. 5.4405e-005 2.3806e-001 2.4557e-003
ZDT2 Avg. 7.3525e-004 9.5537e-004 2.8850e-001
Min. 3.4626¢e-004 7.2183e-004 1. 6806e-001
Max. 5.2372e-003 1.5690e-003 7.8182e-001
Std. 2.4879¢-001 2.5380e-004 3.6122e-001
DTLZ2 Avg. 1.2342e-003 6.7337e-003 7.4199¢-002
Min. 1.2267¢-003 4.9233e-003 5.3109e-002
Max. 2.8106e-003 1.2708e-002 9.1301e-001
Std. 1.4501e-004 2.4500e-003 1.4168e-002
DTLZ6 Avg. 1.3350e-002 2.7952e-002 2.6480e-001
Min. 1.3121e-002 1.9106e-002 1.7264e-001
Max. 2.7114e-002 3.7997e-002 4.9147e+000
Std. 2.3223e-003 6.7314e-003 8.2636e-001

it can be seen that the fronts obtained from M?BFO
are found to be uniformly distributed. However,
NSGA-II algorithm is not able to cover the full
Pareto front of DTLZ6.

Table 1 shows the optimization results of
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Fig. 13. MOPSO on DTLZ6

M2BFO, MOPSO and NSGA-II algorithms for all
multi-objective problems. We can observe from
Table 1 that the performances of M?2BFO are one
order of magnitude better than that of MOPSO
and NSGA-II in both two and three objective
problems.

CONCLUSION

In this paper, we propose a novel multi-
objective bacterial forging algorithm called M2 BFO
for multi-object optimization. The two novel
performance strategies: external archive and
information transfer are proposed and used in
M2BFO in order to improve the algorithm’s
performance.

The four benchmark functions have been
used to test M?BFO in comparison with NSGA II
and MOPSO. It is seen from the comparison that

J PURE APPL MICROBIO, 7(3), SEPTEMBER 2013.
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M?BFO performs better than the other two
algorithms on both two and three objective
optimization problems.
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