Natural Occurrence of Aflatoxin M₁ in Egyptian Milk and Cheese

Abeer Hashem^{1*} and Elsayed F. Abd-Allah²

¹Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box. 2460, Riyadh 11451, Saudi Arabia. ²Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, P. O. Box. 2460, Riyadh 11451, Saudi Arabia.

(Received: 04 November 2012; accepted: 22 December 2012)

A survey was carried out to detect the natural occurrence of aflatoxin M_1 in four hundred and seventy seven milk (168) and cheese (309) samples collected totally from smallholder dairy farming households belong to four governorates (Egypt). The total contamination percent of the milk samples was 37.48% with contamination average ranged between 8-480 ng/l, minimal average of M_1 was detected in camel milk. The homemade cheese (Aresh cheese) was the most contaminated cheese in all governorates except Giza with maximum contamination average (21-87 ng/Kg). All contaminated samples were higher than the maximum admissible levels of EU and US.

Key words: Aflatoxin M₁, Milk, Dairy products, Egypt.

Aflatoxins are secondary toxic metabolites produced naturally mainly by *Aspergillus flavus* and *Aspergillus paraciticus*¹. Aflatoxin M₁ (AM₁) is the hydroxylated metabolite of Aflatoxin B₁ (AB₁) produced from mammalian that ingest AB₁contaminated diets, can be found in, milk and dairy products². The natural contamination of milk and dairy products with AM₁ is serious problem for public health due to its hepatotoxic and carcinogenic potential³. AM₁ has been reported in milk and dairy products in many countries including Thailand⁴, Malaysia², Turkey⁵, Iran⁶, Kuwait⁷ and Egypt⁸.

The maximum allowable concentration of AM_1 in the European countries is 50 ng/L⁹, however, in the developed countries such as Egypt have been reported up to more than 250 ng/L due to improper handling procedures of animal fodder, feed and their main components such as maize and soybean which allowed to their contamination with high level of AB_1^{10} . There is increasing interest

among researchers in determining contamination levels of milk and dairy products due to its widespread occurrence, increasing health risk concerns and development of new technologies to detoxification. Since AM_1 is potential carcinogen, its quantity in milk and dairy products is closely monitored and regulated in most countries.

In Egypt, the number of cancer, kidney failure and hepatic failure increase day by day, due to many cases of contamination of milk and dairy products with high and not acceptable levels of AM_1^{11} . Therefore, this study aimed to determine incidence levels of AM_1 in Egyptian milk and dairy products with special reference to traditionally prepared.

MATERIALS AND METHODS

Samples collection

Milk (168) and cheese (309) samples were collected from smallholder dairy farming households in Sharkia, Ismailia, Dakahlia and Giza governorates, Egypt during the summer of 2012. The samples were collected in sterile 250 ml tubes and transferred to the lab under cooling.

^{*} To whom all correspondence should be addressed. E-mail: habeer@ksu.edu.sa

Extraction and estimation of AM₁

The cheese as well as butter samples were homogenated with dichloromethane, filtered and the filtrates evaporated. The residue was dissolved in aqueous methanol (3:1, v/v) and shaked well with equal volume of Hexane in separating funnel. The aqueous layer separated and AM_1 extracted with chloroform by shaking. The milk samples were skimmed by centrifugation (3.500 g for 10 min) and AM_1 extracted with chloroform. The clean up procedures of AM_1 extracts were carried out using immuno affinity column¹², methanol used for elution. The quantitative determination of AM_1 was carried out by High Performance Liquid Chromatography [HPLC]¹³. Standard AM_1 (Sigma) used as reference (0.1-1.0 ng/ml).

Statistical analysis

The data were statistically analyzed and means were compared using the protected least significant difference (LSD) values.

RESULTS

The present regional report summarizes the natural contamination of milk with AM₁ in smallholder dairy farming households belong to four governorates in Egypt namely Sharkia, Ismailia, Dakahlia and Giza. The highest contamination percent of milk was recorded in Dakahlia (52.25% of samples were contaminated) followed by Ismailia (48.11%); Sharkia (40.45) and lastly Giza (37.47). The total contamination percent of the milk samples (168) was 37.48% with contamination average ranged between 8-480 ng/l. (Table 1). The buffalo milk was the most contaminated milk in all governorates except Giza, in which cow milk was the most contaminated one. The camel milk was free of contamination with AM₁ except in Giza, 18.87% of milk samples were contaminated with minimal average ranged (8-43).

Altogether, 309 cheese samples were examined for the possibility of AM₁ contamination (Table 2). The samples were collected from Sharkia (54), Ismailia (71), Dakahlia (100), and Giza (84). The most contaminated samples were recorded in Sharkia (17.56%), followed by Ismailia (13.73%), Giza (7.94%) and Dakahlia (7.4%). Aresh cheese (home made cheese) was the most contaminated cheese in all governorates except Giza with maximum contamination average (21-87 ng/Kg). On the other hand, Feta cheese was the least contaminated cheese also except in Giza. The White

Governorate	Milk source	Number of collected samples	Number of contaminated samples	Percent of contaminated samples	Range of aflatoxin contamination (ng/l)
Sharkia	Buffalo	12	7.38	61.5	27-210
	Cow	4	1.52	38.0	8-75
	Camel	6	ND	ND	ND
Total	22	8.9	40.45		
Ismailia	Buffalo	18	12.42	69.00	18-287
	Cow	22	8.75	39.77	32-115
	Camel	4	ND	ND	ND
Total	44	21.17	48.11		
Dakahlia	Buffalo	24	15.37	64.04	215-425
	Cow	13	7.62	58.61	67-110
	Camel	7	ND	ND	10-31
Total	44	22.99	52.25		
Giza	Buffalo	32	3.47	10.84	110-480
	Cow	18	4.92	27.33	57-147
	Camel	8	1.51	18.87	8-43
Total	58	9.9	17.07		
Total samples	168	62.96	37.47		

Table 1. Natural occurrence of AM, (ng/l) in milk samples collected from different governorates, Egypt

ND= Not detected under the experimental conditions.

J PURE APPL MICROBIO, 7(3), SEPTEMBER 2013.

Governorate	Cheese source	Number of collected samples	Number of contaminated samples	Percent of contaminated samples	Range of aflatoxin contamination (ng/l)
Sharkia	Aresh	17	10.04	59.06	27-58
	White	22	6.52	29.64	8-15
	Feta	15	1	6.67	22
Total	54	17.56	32.52		
Ismailia	Aresh	12	8.24	68.67	32-87
	White	24	2.34	9.75	14-21
	Feta	35	3.15	9.00	10-18
Total	71	13.73	19.34		
Dakahlia	Aresh	27	4.75	17.59	21-65
	White	41	ND	ND	ND
	Feta	32	2.65	8.28	14-97
Total	100	7.4	7.4		
Giza	Aresh	41	1.62	3.95	28-37
	White	15	3.78	25.20	9-27
	Feta	28	2.54	9.07	15-37
Total	84	7.94	9.45		
Total samples	309	46.63	15.09		

Table 2. Natural occurrence of AM1 (ng/kg) in cheese samples collected from different governorates, Egypt

ND= Not detected under the experimental conditions.

cheese recorded moderate AM_1 contamination between the other cheeses (Aresh and Feta). Generally, the contamination average in all cheese samples ranged between 8-87 ng/Kg. It is necessarily to mention here that the contamination average in cheese samples (8-87 ng/Kg) was lower than those of milk (8-480 ng/Kg).

DISCUSSION

In the present study, AM₁ was detected in all buffalo and cow milk samples collected from all governorates in high level, however camel milk samples were very less contamination. Also, the results of our survey indicated that Aresh cheese was the most contaminated cheese with higher levels of AM₁. In Egypt, similar studies reported high levels of AM, contamination in buffalo as well as cow milk and cheeses however the camel milk samples were below the EU maximum admissible of AM_1 contamination^{8,11}. The levels contamination with AM1 occasionally reach 40 to 50 % and even much higher in some developing countries such as Egypt¹⁰ due to the use of improper handling procedures and lack of methods to prevent decay and deterioration of animal feed

and fodder¹⁴. Worldwide natural contamination of milk and dairy products with AM_1 mainly depends on the contamination of feed with AB_1 and has been reported in most countries. It has been reported that up to 6% of the ingested AB_1 is secreted into the milk as AM_1^{15} . In other developed countries such as Sudan, high level of AM_1 has been reported in animal¹⁶ and breast¹⁷ milks in very high levels. Similar results were reported in other African countries as Kenya¹⁴, Libya¹⁸ and South Africa¹⁹.

The milk and dairy products are consumed daily with primary importance in the diet of adult and children, consequently most countries have set up maximum admissible levels of AB_1 in feed²⁰ and of AM_1 in milk²¹ ranged between 50 to 500 ng/kg in EU and US, respectively,²². In parallel with US and EU, many Asian countries recorded similar low levels of AM_1 in their milk and dairy products.

It was reported that the natural contamination of AM_1 in Turkish dairy products ranges between 50 to 205 ng/kg²³. Kamkar *et al.*,²⁴ reported less than 15% of the raw milk samples were contaminated with AM_1 with average range of 14 ng/L in Iran. In Saudi Arabia, the natural

contamination of dairy products with AM₁ was minimum²⁵ however, in developed Saudi provinces such as Najran, very high level of contamination was reported²⁶.

ACKNOWLEDGMENTS

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group Project no RGP- VPP-271.

REFERENCES

- Reddy ECS, Sudhakar C, Reddy NPE., Aflatoxin contamination in groundnut induced by Aspergillus flavus type fungi: A Critcal Review. *IJABPT* 2011; 2(2):181-192. http:// www.ijabpt.com/pdf/3028-Vijay[1].pdf
- Redzwan SM, Rosita J, Sokhini AMM, Aqilah ARN, Association between aflatoxin M₁ excreted in human urine samples with the consumption of milk and dairy products. *Bull Environ Contam Toxicol* 2012; 89:1115-1119.
- Williams J H, Phillips DT, Jolly PE, Stiles JK, Jolly CM, Aggaewal D., Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences, and intervention. *Am J Clin Nutr* 2004; 80:1106-1122.
- 4. Ruangwises N, Ruangwises S., Aflatoxin M₁ Contamination in raw milk within the central region of Thailand. *Bull Environ Contam Toxicol* 2010; **85**:195-198.
- Aygun O, Essiz D, Durmaz H, Yarsan E., Altintas L., Aflatoxin M₁ levels in surk samples, a traditional Turkish cheese from Southern Turkey *Bull Environ Contam Toxicol* 2009; 83:164-167.
- Rahimi E, Ameri M., A survey of aflatoxin M₁ contamination in bulk milk samples from dairy bovine, ovine, and caprine herds in Iran. *Bull Environ Contam Toxicol* 2012; **89**(1):158-60.
- Srivastava VP, Bu-Abbas A, Alaa-Basuny, Al-Johar W, Al-Mufti S, Siddiqui MK., Aflatoxin M₁ contamination in commercial samples of milk and dairy products in Kuwait. *Food Addit Contam* 2001; 18(11):993-997.
- Motawee MM, Bauer J, McMahon DJ., Survey of aflatoxin M₁ in cow, goat, buffalo and camel milks in Ismailia-Egypt. *Bull Environ Contam Toxicol* 2009; 83:766-769.
- 9. Commission Regulation., (EC) No. 1881/2006

for certain contaminants in foodstuffs. *Off J European Union* 2006; **364**:5-24 L077:1-13.
El-Shanawany AA, Eman Mostafa M, Barakat

of 19th December 2006. Setting maximum levels

- A., Fungal populations and mycotoxins on sila-ge in Assiut and Sohag governorates in Egypt, with a special reference to characte-ristic *Aspergilli* toxin. *Mycopathologia* 2005; **159**:281-289.
- Amer AA, Ibrahim MAE., Determination of aflatoxin M₁ in raw milk and traditional cheeses retailed in Egyptian markets. *J Toxicol Environ Health* 2010; 2(4):50-53.
- Sharman M, Patey AL, Gilbert J., Application of an immunoaffinity column sample clean-up to the determination of aflatoxin M₁ in cheese. J Chromatogr 1989; 474:457-461.
- 13. AOAC [Association of Official Analytical Chemists]., Aflatoxin M_1 in milk and cheese, thin-layer chromatographic method. Natural Toxins, Chapter 49 (pp. 37-38). Official Methods of Analysis of AOAC International, 17th edition, volume II, AOAC International. Gaithersburg, Maryland 20877-2417, USA, 2000.
- Kang'ethe EK, Lang'a KA., Aflatoxin B₁ and M₁ contamination of animal feeds and milk from urban centers in Kenya. *Afr Health Sci* 2009; 9(4): 218-226.
- van Egmond HP, Dragacci S., Liquid Chromatographic Method for Aflatoxin M₁ in Milk. In: Methods in Molecular Biology, 157, Mycotoxin Protocols II. Trucksess MW, Pohland AE (Eds) 59-69 Humana Press, ISBN 0-89603-623-5, Totowa (NJ), United States, 2001.
- Elzupir AO, Younis MH, Himmat Fadul M, Elhussein AM., Determination of aflatoxins in animal feed in Khartoum State, Sudan. J Anim Vet Adv 2009; 8(5):1000-1003.
- Elzupir AO, Abas AA, Fadul MH, Modwi AK, Ali NMI, Jadian AFF, Ahmed NAA, Adam SYA, Ahmed NAM, Khairy AAA, Khalil EAG., Aflatoxin M₁ in breast milk of nursing Sudanese mothers. *Mycotoxin Res* 2012; 28:131-134.
- Elgerbi AM, Aidoo KE, Candlish AA, Tester RF., Occurrence of aflatoxin M₁ in randomly selected North African milk and cheese samples. *Food Addit Contam* 2004; 21(6):592-597.
- 19. Dutton M, Mwanza M, de Kock S, Khilosia L., Mycotoxins in South African foods: A case study on aflatoxin in milk. *Mycotoxin Res* 2012; **28**:19-25.
- 20. European Commission., Commission Regulation (EC) No 100/2003, Official Journal of the
- J PURE APPL MICROBIO, 7(3), SEPTEMBER 2013.

European Community, L 2003; **285**, pp. 33-37.

- European Union (2010) Commission regulation No 165/2010 of 26th February 2010 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins. *Off J Eur Comm* L50: 8-12.
- 22. FAO Corporate Document Repository. (April 2011) Worldwide regulations for mycotoxins in food and feed in 2003. 20/04/2011. Available from: http://www.fao.org/docrep/007/y5499e/ y5499e0n.htm#TopOfPage
- Sefidgar SAA, Mirzae M, Assmar M, Naddaf SR., Aflatoxin M₁ in Pasteurized Milk in Babol city, Mazandaran Province, Iran. *Iranian J Publ Health* 2010; 40(1):115-118.
- 24. Kamkar A, Khaniki GhRJ, Alavi SA., Occurrence of aflatoxin M, in raw milk produced

in Ardebil of Iran. *Iran J Environ Health Sci Eng* 2011; **8**(2):123-128.

1773

- Ashraf MW., Determination of aflatoxin levels in some dairy food products and dry nuts consumed in Saudi Arabia. *Food and Public Health* 2012; 2(1): 39-42.
- Abdallah MIM, Bazalou MS, Al-Julaifi MZ., *Determination* of *aflatoxin* M₁ *concentrations* in *full-fat cow's* UHT milk sold for consumption in Najran-Saudi regarding its public health significance. *Egypt J Appl Sci* 2012; 27 (3):40-54.
- https://portal.nu.edu.sa/web/scientificresearches/medhat-ibrahim-mohamed-ibrahimabdallah; jsessionid= 3F2F169771652DB411 EFA1DD10824207.s2