Pathogenicity of *Scleritinia sclerotiorum* to Beans (*Phaseolus vulgaris*, L.) Cultivars

Ashraf A. Hatamleh¹, Mohamed El-sheshtawi², Abdallah M. Elgorban^{2,3}, Ali H. Bahkali¹ and Basheer A. Al-Sum^{1*}

¹Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia. ²Plant Pathology Department, College of Agriculture, Mansoura University, Mansoura, Egypt. ³Center of Excellence in Biotechnology Research, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia. ⁴Plant Pathology Institute, Agricultural Research Center, Giza, Egypt.

(Received: 20 September 2013; accepted: 06 November 2013)

Sclerotinia rot caused by *Sclerotinia sclerotiorum* is a serious threat to green beans production in Egypt. The pathogenicity of this pathogen to 11 different cultivars was measured by survival plants % in the genotypes. Significant differences were observed between different cultivars (P ≤ 0.005). Results indicate that, Amy and Giza cultivars were more susceptible to infection with *S. sclerotiorum* that produced 16% survival plants in both cultivars after 60 days. While, Duel cultivar was less sensitive to infection with the pathogen that giving 40% living plants at 60 days.

Key words: Sclerotinia Sclerotiorum, Pathogenicity, Beans.

Sclerotinia white rot caused by the ascomycete Sclerotinia sclerotiorum, is a serious hazard to green beans production with substantial yield losses from this disease recorded world-wide ^{1,2,3}. While, S. sclerotiorum is considered to show little host specificity⁴, it is important to understand that the diversity of this pathogen to develop effective strategies to detect the identification and dissemination of host resistance. The pathogenicity and diversity studies of this fungus have been examined for different crops in the world ^{5,6,7,8}. Several past studies have explored the genetic diversity of S. sclerotiorum^{3, 9,10,11,12}. Further, only limited studieshave been conducted so far, to understand the diversity and pathogenicity of S. sclerotiorum on beans or other hosts in Egypt¹³. These include the work of Sexton et al. 14 who

established genotypicdiversity among S. sclerotiorum isolates collected from oilseed rape crops from Australia, utilizing microsatellite markers, and Ekinset al. 15, who compared aggressiveness of S. sclerotiorum isolates also from Australia collected on sunflower. Alterations in the morphology of S. sclerotiorum isolates have previously been noticed by Li et al. ¹⁶ and Garrabrandt et al. ¹⁷ where isolates producing tan sclerotia were identified. Very fewreports exist to date describing darklypigmented isolates of S. sclerotiorum, such as those from Canada and the south-western region of the USA ^{18,19}. Primarily, thedark color of the fungus colonies results from the construction of melanin, the main role of which inthis pathogen is to protect the sclerotia from adverse biological and environmental conditions^{18,20}. An association of melanin with pathogenicity has also been reported in other pathogens. The objective of our study was evaluate of the pathogenicity of S. sclerotiorum from Ismailia governorate, Egypt to

^{*} To whom all correspondence should be addressed.

selected genotypes of bean, under greenhouse conditions.

MATERIALSAND METHODS

Sclerotinia sclerotiorum isolates

S. sclerotiorum was collected from Ismailia governorate, Egypt in 2008 was used inthis study. The initial cultures were then sub-cultured on to water agar and stored at 4°C. All isolates were subsequently sub-cultured to potato dextrose agar (PDA) as this medium allows the best expression of any pigmentation occurring in *S. sclerotiorum* colonies ^{18,20}.

In this experiment, we studied the pathogenicity of S. sclerotiorum to 11 bean cultivars. The experiment was conducted under greenhouse condition. Pots $(30 \times 25 \times 30)$ containing sterile soil (sand: loamy sand: compost, 1:2:1) were used, 5 seeds/pot and 5 replicates per treatment. Seedlings were grown until cotyledons were fully expanded. Five agar plug discs (each 5 mm²diam) were cut from the actively growing margin of 3 day-old colonies of S. sclerotiorum on PDA at 20±2°C and transferred to 250 ml flasks containing 100 ml ofsterilized potato dextrose broth. Flasks were incubated at 20±2 °C for 7 days, colonies of S. sclerotiorum were harvested and washed twice with sterilized deionized water. The mycelial suspension was then filtered through four layers of cheesecloth and the concentration adjusted with the same liquid medium to 1×10^4 cfu/ml using a haemocytometer. A total of 20 ml of mycelial suspension were applied to pots. The number of survival plants after 15, 30, 45 and 60 days were recorded.

Statistical analysis

Data collected from all experiments were statistically analyzed using the Statistic Analysis System package (SAS institute, Cary, NC, USA). Differences between treatments were studied using Fisher's least significant difference (LSD) test and Duncan's Multiple Range Lest²¹. All analysis were performed at P 5 % level.

RESULTS

Pathogenicity of *S. sclerotiorum* to different bean cultivars

After 15 days

Data in Table 1 and 2 reveal that no significant difference in degree of sensitivity for the tested cultivars to *S. sclerotiorum*. The genotype paulista was the lowest cultivar for sensitivity to *S. sclerotiorum* that giving 80% survival plants. This was followed by both saheland amy which produced the same result with 72% survival plants. While, giza-4 cultivar was the most sensitivity to infection with the fungus, which produced 32% survival plants.

After 30 day

There were non-significant differences between all cultivars for sensitivity of the white rot disease caused by *S. sclerotiorum*. The variety duel was the best cultivar for tolerant to infestation by *S. sclerotiorum* that giving 60.00% living plants

Table 1. ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
Survival plant after 15 days	Between Groups Within groups Total	27.636 33.200 60.63610	10 44 54	2.764 0.755	3.663	0.001
Survival plant after 30 days	Between Groups Within groups Total	14.436 14.800 32.836	10 44 54	1.444 0.418	3.452	0.002
Survival plant after 45 days	Between Groups Within groups Total	14.109 15.600 29.709	10 44 54	1.411 0.355	3.979	0.001
Survival plant after 60 days	Between Groups Within groups Total	6.182 13.200 19.382	10 44 54	0.618 0.300	2.061	0.049

J PURE APPL MICROBIO, 7(4), DECEMBER 2013.

	15 days			30 days			45 days			60 days	
lo.	Mo. %	Sur.%	No.	Mo. %	Sur.%	No.	Mo. %	Sur.%	No.	Mo. %	sur.%
5bc	28.0	72.0	2.2bcde	28.0	44.0	2.2bc	56.0	44.0	1.4ab	16.0	28.0
Sab	44.0	56.0	2.0ab	16.0	40.0	1.6ab	68.0	32.0	1.4ab	4.0	28.0
4bc	32.0	68.0	3.0d	8.0	60.0	2.6c	48.0	52.0	2.0b	12.0	40.0
4ab	52.0	48.0	1.4ab	20.0	28.0	1.2ab	76.0	24.0	1.0a	4.0	20.0
4bc	32.0	68.0	2.4cde	20.0	48.0	1.6ab	68.0	32.0	1.4ab	4.0	28.0
)bc	40.0	60.0	2.6de	8.0	52.0	1.6ab	68.0	32.0	1.4ab	4.0	28.0
0d	20.0	80.0	2.4cde	32.0	48.0	1.6ab	68.0	32.0	1.2a	8.0	24.0
5bc	28.0	72.0	1.6ab	40.0	32.0	0.8a	84.0	16.0	0.8a	0.0	16.0
5ab	48.0	52.0	2.0ab	12.0	40.0	1.4ab	72.0	28.0	1.0a	8.0	20.0
)ab	60.0	40.0	1.8ab	4.0	36.0	1.4ab	72.0	28.0	1.0a	8.0	20.0
6a	68.0	32.0	1.2a	8.0	24.0	0.8a	84.0	16.0	0.8a	0.0	16.0
71			0.53			0.49			0.45		
ving pla	nts; Mo. % owed by th	= Mortalit e same lett	ty percentag er are not si	e; Sur. %= 3 mificantly o	Survival pla lifferent acc	nt% ording to I	Juncun's mu	ltinle range	test (P£0.0		
	o 5bc 5bc 5bc 5bc 5bc 1bbc 5bc 5bc 6a 5bc 6a 71 71 71 71 71 71 71 71 71 71 71 71 71	15 days 0. Mo. % 5bc 28.0 5bc 28.0 5bc 28.0 5bc 28.0 4ab 52.0 4bc 52.0 32.0 32.0 3bc 28.0 3bc 40.0 3bc 28.0 3bc 40.0 3bc 28.0 3bc 48.0 3bc 68.0 6a 68.0 6a 68.0 71 71 11 followed by th	15 days $0.$ Mo. % Sur.% $5bc$ 28.0 72.0 $4bc$ 32.0 68.0 $4bc$ 52.0 68.0 bbc 40.0 68.0 $0d$ 20.0 88.0 $0d$ 20.0 80.0 $0d$ 20.0 80.0 $0d$ 20.0 80.0 $0d$ 20.0 80.0 $0d$ 28.0 72.0 $0d$ 28.0 72.0 $0d$ 60.0 80.0 $0d$ 68.0 32.0 fab 68.0	15 days 0. Mo. % Sur.% No. 5bc 28.0 72.0 2.2bcde 5bc 28.0 72.0 2.2bcde 5bc 28.0 72.0 2.2bcde 5bc 28.0 72.0 2.2bcde 8ab 32.0 68.0 3.0d 4bc 52.0 68.0 3.0d 4bc 52.0 68.0 2.4cde 0bc 40.0 60.0 2.4cde 0bc 40.0 52.0 1.4ab 0ab 60.0 2.4cde 0.5 0ab 60.0 2.4cde 0.5 0ab 60.0 2.4cde 0.5 0ab 60.0 2.4cde 0.5 0ab 60.0 2.0ab 1.6ab 0.0 30.0 1.8ab 0.5 0.0 32.0 1.6ab 0.53 0.53 1.16 0.53 0.53 0.53 0.53 0.	15 days30 days $0.$ Mo. %Sur.%No.Mo. % $5bc$ 28.072.02.2bcde28.0 $5bc$ 28.072.02.0ab16.0 $8ab$ 32.068.03.0d8.0 $4bc$ 52.048.01.4ab20.0 bbc 48.01.4ab20.0 bbc 40.052.048.02.4cde bbc 40.080.02.4cde32.0 bbc 40.080.02.4cde32.0 bbc 40.080.02.4cde32.0 bbc 40.080.02.4cde32.0 bbc 48.01.6ab40.0 bbc 60.02.0ab12.0 bbc 60.02.0ab12.0 bbc 68.02.4cde32.0 bbc 60.02.0ab12.0 bbc 60.01.8ab4.0 bbc 68.032.00.53.0 bbc 68.032.00.53 bbc 68.032.00.53 bc 68.032.00.53 bc 68.01.8ab bc 9.00.53 bc 0.00.53 bc 0	15 days30 dayso.Mo. %Sur.%No.Mo. %Sur.% $5bc$ Sur.%No.Mo. %Sur.%Sur.% $5bc$ 28.072.02.2bcde28.044.0 $5bc$ 23.056.02.0ab16.040.0 $4bc$ 52.03.0d8.060.0 $4bc$ 52.02.0ab16.048.0 bc 48.01.4ab20.028.0 $4bc$ 32.068.02.4cde8.0 52.0 68.02.4cde8.052.0 $9bc$ 49.02.4cde8.052.0 $5bc$ 28.01.6ab40.032.0 $5bc$ 28.01.6ab40.032.0 52.0 68.02.0ab12.040.0 52.0 80.02.4cde8.052.0 50.0 66.01.8ab4.032.0 50.0 68.032.01.2a8.0 52.0 68.032.01.2a8.0 51.0 68.032.00.5330.0 51.0 68.032.01.2a8.0 51.0 68.032.00.5330.0 52.0 68.032.01.2a8.0 51.0 68.032.00.5330.0 52.0 68.032.01.5a8.0 51.0 68.032.00.5330.0 51.0 68.032.00.5330.0 52.0 68.032.0<	15 days30 days0.Mo. %Sur.%No.Mo. %Sur.%No. $\overline{0}$ Mo. %Sur.%No.Mo. %Sur.%No. $\overline{560}$ Sur.%No.Mo. %Sur.%No. $\overline{560}$ 2.02.02.044.02.2bc $\overline{580}$ 3.06.02.02.02.0 $\overline{440}$ 56.02.02.044.02.2bc $\overline{440}$ 56.02.02.044.02.2bc $\overline{440}$ 56.02.02.044.02.2bc $\overline{440}$ 57.01.4ab20.028.01.2ab $\overline{160}$ 20.02.4cde8.052.01.6ab $\overline{160}$ 20.02.4cde32.048.01.6ab $\overline{160}$ 20.02.4cde32.048.01.6ab $\overline{160}$ 20.02.4cde32.048.01.6ab $\overline{160}$ 20.02.4cde32.048.01.6ab $\overline{160}$ 20.02.4cde32.048.01.6ab $\overline{120}$ 28.02.4cde32.01.4ab $\overline{120}$ 28.02.40.032.00.8a $\overline{120}$ 68.032.01.2ab0.3a $\overline{120}$ 68.032.01.2ab0.3b $\overline{120}$ 1.2ab4.036.01.4ab $\overline{120}$ 28.02.4cde30.00.40.0 $\overline{120}$ 28.02.4cde30.00.3b $\overline{120}$ 28.02	15 days30 days45 dayso.Mo. %Sur.%No.Mo. %545 days $\overline{0}$ Mo. %Sur.%No.Mo. %56.0 $\overline{560}$ Sur.%No.Mo. %Sur.%Mo. % $\overline{560}$ Sur.%No.Mo. %Sur.%Mo. % $\overline{560}$ Sur.%No.Mo. %Sur.%Mo. % $\overline{560}$ 28.02.0ab16.040.01.6ab $\overline{520}$ 52.02.0ab16.040.02.6c $\overline{480}$ 3.0d8.060.02.6c48.0 $\overline{90}$ 22.048.01.4ab76.0 $\overline{90}$ 20.028.01.6ab68.0 $\overline{90}$ 20.028.01.6ab68.0 $\overline{90}$ 20.028.01.6ab68.0 $\overline{90}$ 20.02.4cde32.048.01.6ab $\overline{90}$ 20.028.01.6ab68.0 $\overline{90}$ 20.02.4cde32.048.01.6ab $\overline{90}$ 20.032.048.01.6ab $\overline{90}$ 48.01.2a8.02.4cde $\overline{90}$ 32.01.2a8.02.4cde32.0 $\overline{90}$ 48.01.2a8.00.49 $\overline{90}$ 32.01.2a8.00.49 $\overline{90}$ 32.01.2a8.00.49 $\overline{90}$ 32.01.2a8.00.49 $\overline{90}$ 32.01.2a8.00.49 $\overline{90}$ 32.00	15 days 30 days 45 days o. Mo. % Sur.% No. Mo. % Sur.% bc Mo. % Sur.% No. Mo. % Sur.% bc 28.0 72.0 2.2bcde 28.0 44.0 2.2bc 56.0 44.0 bc 28.0 72.0 2.0ab 16.0 40.0 1.6ab 68.0 32.0 bc 32.0 68.0 2.0ab 16.0 40.0 2.6cc 48.0 32.0 bc 40.0 68.0 2.4cde 20.0 28.0 1.6ab 68.0 32.0 bc 40.0 8.0 52.0 1.6ab 68.0 32.0 bc 20.0 28.0 1.6ab 68.0 32.0 32.0 bc 28.0 72.0 1.6ab 32.0 0.8a 84.0 16.0 bc 28.0 32.0 0.8a 84.0 16.0 0.60 0.0 0.49 0.16.0 <	15 days30 days45 dayso.Mo. %Sur.%No.Mo. %Sur.%No.bcZ8.0Sur.%No.Mo. %Sur.%No.bc28.072.02.2bcde28.044.01.4abbc28.072.02.0ab16.040.01.6ab68.032.0bc32.048.01.4ab20.028.01.6ab68.032.01.4abbc40.056.02.4cde28.048.01.6ab68.032.01.4abbc40.080.02.4cde20.028.01.6ab68.032.01.4abbc40.080.02.4cde32.01.6ab68.032.01.4abbc40.080.02.4cde8.052.01.6ab68.032.01.2abc28.072.01.6ab48.01.6ab68.032.01.0aabb60.02.6de8.052.01.6ab68.032.01.0aabb60.02.0ab12.048.01.6ab68.032.01.0aabb60.02.0ab12.02.4cde8.052.01.6ab68.032.0abb60.02.0ab12.048.01.6ab68.032.01.2aabb60.02.4cde32.01.6ab68.032.01.2aabb68.032.01.8ab4.00.6a0.8a34.0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

when compared to other cultivars. These were followed by paulista and branco with 52 and 48%survival plants, respectively. Whereas, the most cultivar for sensitivity to the white rot disease was giza-4 and Samantha giving 24 and 28survival plants (Table 1 and 2).

After 45 day

There were non-significant differences between among all cultivars to sensitivity of the white rot disease caused by *S. sclerotiorum* (Table 1 and 2). The lowest cultivar for sensitivity was duel which produced 52% survival plants, when compared to other cultivars, followed by sahelthat giving 44% survival plants. Conversely, the cultivars amy and giza-4 were the most cultivars sensitivity to the fungus that giving 16% survival plants in both cultivars.

After 60 day

There were non-significant differences between all cultivars tested. The duel cultivar was the lowest cultivar for sensitivity to *S. sclerotiorum* which produced 40% survival plants, followed by sahel, mael, belina and paulistathat giving the same result (28% survival plants). While, the cultivars amy and giza-4 were the most sensitivity for the white rot disease caused by *S. sclerotiorum* giving 16% living plants in both cultivars (Table 1 and 2).

This finding is consistent with other reports for the pathogenicity of S. sclerotiorumto several crops^{23,23}. Usually, the strong defense against the wild-type strain of S. sclerotiorum at the early stage of infection is not noticeable, whichmeans that the defense is most likely to be suppressed or postponedby this pathogen. If suppression is a means by which S. sclerotiorumis successful as a pathogen, then it is not surprising that S. sclerotiorum may secrete pathogenicity factors to aid in the suppression of host resistance. Previous studies on the pathogenicity of plant pathogenic fungigenerally focus on toxins (including proteinaceous effectors), proteinases and plant cell degrading enzymes such as pectinases and cellulase (EC 3.2.1.4, endo-1,4-beta-D-glucanase, beta-1,4-glucanase, beta-1,4endoglucan hydrolase, celluase A, cellulosin AP, endoglucanase)^{24,25}. Oxalic acid is considered a keypathogenicity factor for the killing of plant cells and tissues by S. sclerotiorum, and it is also involved in reducing host resistance and interjecting the host physiology rather than as

J PURE APPL MICROBIO, 7(4), DECEMBER 2013.

adirect killer^{25,26,27,28}. However, this topic is also one of increasing complexity; several mutants of *S. sclerotiorum* produce considerable amounts of oxalic acid, but do not infect the plant, but virulence is weak²⁹; in addition, the mutant cannot produce oxalic acid, but can still infect plant³⁰. Recently, Williams *et al*²⁹ confirmed that reactive oxygen species was virtually absent in DAB stained leaf inoculated with the wild-type strain of *S. sclerotiorum*, while leaves inoculated with an oxalic acid deficient mutant A2 displayed strong DAB staining surrounding the infection point, and they believed that oxalic acid suppresses host defenses by manipulating the host redox environment at8 hpi, an early stage of infection.

ACKNOWLEDGMENTS

This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center. I would like to express my sincere gratitude and deep gratefulness to all our colleagues of the Department of Botany and Microbiology, King Saud University for their valuable criticism and advice.

REFERENCES

- Hind, T. L., Ash, G. J., Murray, G. M., Prevalence ofSclerotinia stem rot of canola in New South Wales. *Aus. J. Exp. Agr.*, 2003, 43: 163–168.
- Koch, S., Dunker, S., Kleinhenz, B., Rohrig, M., vonTiedemann, A., A crop loss-related forcastingmodel for Sclerotinia stem rot in winter oilseed rape. *Phytopathol.*, 2007,97: 1186–1194.
- Malvarez, M., Carbone, I., Grunwald, N.J., Subbarao, K.V., Schafer, M., Kohn, L.M., New populations of *Sclerotinia sclerotiorum* from lettuce in California andpeas and lentils in Washington. *Phytopathol.*, 2007,97: 470–483.
- Purdy, L.H., Sclerotinia sclerotiorum: history, diseasesand symptomatology, host range, geographic distributionand impact. *Phytopathology*, 1979, 69: 875–880.
- Auclair, J., Boland, G.J., Kohn, L.M., & Rajcan, I., Genetic interaction between Glycine max and *Sclerotinia sclerotiorum* using a straw inoculation method. *PlantDis.*, 2004, 88: 891–895.
- Hambleton, S., Walker, C., & Kohn, L. M., Clonallineages of *Sclerotinia sclerotiorum* previously knownfrom other crops predominate in 1999–2000 samples fromOntario and Quebec

J PURE APPL MICROBIO, 7(4), DECEMBER 2013.

soybean. Can. J. PlantPathol.,2002, 24: 309-315.

- 7. Maltby, A.D., Mihail, J.D., Competition among*Sclerotinia sclerotiorum* genotypes within canola stems.*Can.J. Bot.*, 1997, **75**: 462–468.
- Kull, L.S., Vuong, T.D., Powers, K.S., Eskridge, K.M., Steadman, J.R., Hartman, GL., Evaluation ofresistance screening methods for Sclerotinia stem rot ofsoybean and dry bean. *Plant Dis.*, 2003, 87: 1471–1476.
- Kohn, L.M., Stasovski, E., Carbone, I., Royer, J., Anderson, J.B., Mycelial incompatibility andmolecular markers identify genetic variability in fieldpopulations of *Sclerotinia sclerotiorum*. *Phytopathol.*, 1991, **81**: 480–485.
- Kohli, Y., Morrall, R.A.A., Anderson, J.B., Kohn, L.M.,Local and trans-Canadian clonal distribution of *Sclerotinia sclerotiorum* on canola. *Phytopathol.*,1992, 82: 875–880.
- Cubeta, M.A., Cody, B.R., Kohli, Y., Kohn, L.M., Clonality in *Sclerotinia sclerotiorum* on infected cabbage ineastern North Carolina. *Phytopathol.*, 1997,87: 1000–1004.
- Sun, J. M., Irzykowski, W., Jedryczka, M., Han, F. X.(2005). Analysis of the genetic structure of *Sclerotinia sclerotiorum* (Lib.) de Bary populations from differentregions and host plants by random amplified polymorphicDNA markers. *J. Int. Plant Biol.*, 2005, 47:385–395.
- Elgorban A.M., Al-Sum, B.A., Elsheshtawi, M., Bahkali, A.H. Factors affecting on Sclerotinia sclerotiorumisolated from beans growing in Ismailia, Egypt. *Life Sci J*, 2013; 10:1278-1282
- 14. Sexton, A.C., Whitten, A.R., Howlett, B.J., Population structure of *Sclerotinia sclerotiorum* in anAustralian canola field at flowering and stem-infectionstages of the disease cycle. *Genome*, 2006, **49**: 1408–1415.
- Ekins, M.G., Aitken, E.A.B., Goulter, K.C., Aggressiveness among isolates of *Sclerotinia* sclerotiorumfrom sunflower. *Aus. Plant Pathol.*,2007, 36, 580–586.
- Li, G.Q., Huang, H.C., Laroche, A., Acharaya, S. N.,Occurrence and characterization of hypovirulencein the tan sclerotial isolates of S10 of *Sclerotinia sclerotiorum*. *Mycol. Res.*, 2003, 107: 1350–1360.
- Garrabrandt, L.E., Johnston, S.A., Peterson, J.L., Tan sclerotia of *Sclerotinia sclerotiorum* from lettuce.*Mycologia*, 1983, **75**: 451–456.
- Lazarovits, G., Starratt, A.N., Huang, H.C., The effectof tricyclazole and culture medium on production of themelanin precursor 1, 8-dihydroxynaphthalene by *Sclerotinia sclerotiorum* isolate SS7. *Pest.Bioch. Physiol.*, 2000, 67: 54–62.

- Sanogo, S., Puppala, N., Characterization of darklypigmented mycelial isolates of *Sclerotinia sclerotiorum* onValencia peanut in New Mexico. Plant Dis., 2007, **91**: 1077–1082.
- 20. Butler, M. J., & Day, A. W. Fungal melanins: a review. *Can J Microbio*, 1998; **44**, 1115–1136.
- 21. DuncanDB, MultiplerangesandmultipleFtest. *Biometrics*, 1955, **11**:1-42.
- 22. Bolton MD, Thomma BPHJ, Nelson BD. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol, 2006; 7:1–16.
- Kim KS, Min JY, Dickman MB. Oxalic acid is an elicitor of plant programmed cell death during *Sclerotinia sclerotiorum* disease development. *Molecular Plant–Microbe Interactions*, 2008; 21, 605–612.
- 24. Riou, C., Freyssinet, G., Fevre, M., Purification and characterization of extracellular pectinolytic enzymes produced by *Sclerotinia sclerotiorum*. *Appl environ Microbiol.*, 1992, **58**: 578–583.
- Cessna, S.G., Sears, V.E., Dickman, M.B., Low, P.S., Oxalic acid, a pathogenicity factor for *Sclerotinia sclerotiorum*, suppresses the oxidative burst of the host plant. *Plant Cell*, 2000,12: 2191–2200.
- Kim, K.S., Min, J.Y., Dickman, M.B., Oxalic acid is an elicitor of plant programmed cell death during *Sclerotinia sclerotiorum* disease development. *Mol. Plant Microbe Interact.*, 2008, 21: 605–612.
- 27. Williams, B., Kabbage, M., Kim, H.J., Britt, R.,

Dickman, M.B., Tipping the balance: *Sclerotinia sclerotiorum* secreted oxalic acid suppresses host defenses bymanipulating the host redox environment. *PLoSPathog*, 2011, 7: e1002107.

3279

- Guimara^{es}, R.L., Stotz, H.U., Oxalate production by *Sclerotinia sclerotiorum* deregulates guard cells during infection. *Plant Physiol.*, 2004, **136**: 3703–3711.
- Li, G.Q., Jiang, D.H., Zhou, B., Wang, D., Rimmer, R.,Oxalic acid production inhypovirulent and virulent strains of *Sclerotinia sclerotiorum*. In: Proceedings ofInternational Symposium on Rapeseed Science. Ed by Liu Houli and Fu Tingdong, Science Press, New York., 2001, 261–270.
- Xu, L.S., Xiang, M., White, D., Chen, W.D., Oxalate-minus mutants of *Sclerotinia* sclerotiorum via random mutagenesis retain pathogenicity. *Phytopathol.*, 2001,101: S104.
- 31. AL-Shammari Turki A, Bahkali Ali H, Elgorban Abdallah M, El-Kahky Maged T and Al-Sum Basheer A. The Use of Trichoderma longibrachiatum and Mortierella alpina Against Root-Knot Nematode, Meloidogyne javanica on Tomato. J Pure Appl Microbio, 2013; 7(Spl Edition Nov): 199-207.
- 32. Elgorban Abdallah M, Bahkali Ali H and Al-Sum Basheer A. Biological Control of Root Rots and Stems Canker of Tomato Plants Caused by Rhizoctonia solani in Saudi Arabia. JPure Appl Microbio, 2013; 7(Spl Edition Nov):819-826.