Insecticidal and Antitumour Properties of Coral Epibiotic Bacteria from Gulf of Mannar, Southeastern India

C. Chellaram^{1*}, T. Prem Anand, T.A. Alex John and C. Felicia Shanthini²

¹Department of Biomedical Engineering, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai - 600 062, India. ²Department of Marine Science and Coastal Resource Management Madras Christian College, Chennai - 600 062, India.

(Received: 04 February 2013; accepted: 21 March 2013)

The discovery of novel chemical classes has been in decline for the past two decades, the need to exploit new resources in search for effective chemicals with novel mechanism of actions is imperative. Marine bacteria are such a resource yet to be tapped, and the potential it offers is vast. The antitumour assay (artemia toxicity bioassay) developed by McLaughlin *et al.* is being used as a "bench top bioassay" by many researchers for the preliminary screening of bioactive compounds. In this study 94 Streptomyces strains isolated from different types of corals were screened for artemia and insecticidal activity. The lowest ED50 values were exhibited by 4 strains out of the 94 strains screened. Bacterial extracts exhibiting artemia toxicity were further screened for their insecticidal activity using two storage pests, Tribolium castaneum and Sitophilus oryzae. 59 strains exhibited activity either against Tribolium castaneum or Sitophilus oryzae or both.

Key words: Soft Corals, Antitumor Activity, Insecticidal Activity, Epibiotic Bacteria.

The taxonomic diversity of marine organisms is large as is their biochemical and behavioral diversity, so it probably should have come as no surprise that this chemical diversity was even found to contain pesticide substance close to DDT and Chlordane (Kennett, 1990). Microorganisms have been exceptionally rich sources of drugs, including antibiotics, immunosuppressants etc (Chellaram *et al.*, 2011). However, these drugs have been produced from a very small range of world's microbial diversity (Chellaram *et al.*, 2012). The capacity of Streptomyces to produce new compounds remains unsurpassed though members of other actinomycetes genera are becoming increasingly

E-mail: chellarampublications@gmail.com

important as a source of novel products (Nolan and Cross, 1988). Actinomycetes have been found to be a unique source of commercially significant products and these organisms were best known as a source of novel antibiotics (Okami *et al.*, 1979, Anbuselvi *et al.*, 2009 and Chellaram *et al.*, 2013).

In spite of the advances in computer assisted drug design in molecular biology and gene therapy there is still a pressing need for new drugs to counteract drug resistant pathogens, for instance, the mycobacterium that causes tuberculosis or multidrug resistant cancers or even disease states such as Alzheimer which is of pressing concern as the age demographics of the Western world change (Munro et al., 1999). Regarding marine natural products, in the area of cancer there have been valuable discoveries. Of the marine natural products or analogues that are currently under clinical investigation as potential new anticancer drugs, the marine alkaloid (Eteinascidin 743 (ET-743) is by far the most advanced compound. Marine microorganism has

 $^{^{\}ast}$ To whom all correspondence should be addressed. Tel.: +91-9944040538;

been reported to produce metabolites, which exhibit anticancer activity (Proksch *et al.*, 2002; Chellaram *et al.*, 2009). The novel cytotoxic macrolide and anticancer antibiotics produced by marine bacterium Micromonospora and Pelagiobacter variabilis respectively (Chimeno *et al.* 2000). Fenical, 1993 isolated an unidentified Streptomycetes producing cytotoxic agents, octalactins A and B from the surface of a gorgonian coral.

Insects and mites produce damage and loss of crops in both quantity and quality in various ways. These damages occur during plant growth, post harvest storage and transportation. The yield loss of crops by nibbling, injury, and growth retardation is estimated to be 20 - 30%. An additional 10% is lost during post harvest storage and transportation. The world market of pesticides has increased to a value of 1.1 billion dollars in 1960 and it increased to 23 billion US dollars in 1990 (Duke, et al., 1993). The artemia toxicity and pesticidal bioassay developed by McLaughlin et al.1991 is being used as a "bench top bioassay" by many researchers for the preliminary screening of bioactive compounds. The brine shrimp lethality or toxicity assay has the following advantages, it is rapid (24 hrs), inexpensive and simple (no aseptic techniques are required), utilizes a large number of organisms for statistical validations, requires no special equipment and relatively small amount of sample (20mg), and does not require animal serum as is needed for cytotoxicities. Until now very few works reported on the screening of marine bacteria for insecticidal activity. So in the present study, bacterial extracts exhibiting artemia toxicity were further screened and their insecticidal activity were tested using two storage pests, Tribolium castaneum and Sitophilus oryzae.

MATERIALS AND METHODS

In the initial screening for artemia toxicity with bacterial culture extracts, results were observed only in actinomycetes strains. So the screening was limited to the 94 Streptomyces strains isolated from soft corals, (*Lobophytum* sp and *Sinularia* Sp) and Sea fans (Subergorgia suberosa and Junceella juncea), to save time and effort. As all the Streptomyces strains were isolated from Zobell Marine Agar plates, the broth culture

J PURE APPL MICROBIO, 7(4), DECEMBER 2013.

of these strains were carried out in Zobell Marine broth.

Preparation of crude extracts

The bacteria were cultured in five 250 ml conical flasks each containing 200 ml of Zobell Marine broth. Initially a seed culture of 100ml was cultured in a rotary shaker (290 rpm) for 7 days in room temperature and 10 ml of this was added to the bacterial cultures in the flasks and cultured in the shaker for 7 to 10 days at 290 rpm at room temperature. Extraction of the culture broth was carried out by liquid-liquid extraction method outlined by Gailliot, 1998 with slight modification. The cultures were pooled in a "I -lit beaker and equal volume of ethyl acetate was added and stirred in a magnetic stirrer for 30mins. The broth and solvent phase (ethylaceate phase) was removed in a separating funnel, and the water phase discarded. The ethylaceate phase was filtered through a Whatman no. 1 filter and concentrated by evaporation. The residue obtained was weighed in an electronic balance and used for the assay.

Brine Shrimp Lethality Bioassay

The brine shrimp lethality bioassay was carried out following the method outlined by McLaughlin et al., 1991. The filtered seawater (35ppt) was taken in a small tank and commercially procured Artemia cysts were added to one side of the divided tank and a lamp was placed on the other side to attract hatched nauplii through perforations in the tank. The cysts were allowed to hatch as nauplii. 20 mg of test sample was weighed and 2 ml solvent was added. From this solution 500, 50 and 5 ml were transferred to vials corresponding to 1000, 100 and 10 µg /ml (test concentrations). Three vials for each concentration were prepared. The solvents were evaporated overnight. Ten numbers of the hatched out nauplii were added to each vial, and the volume was adjusted with seawater to 5 ml/vial and after 24 hrs the numbers of survivors were recorded. The data were analyzed with Finney computer program to determine ED50 values.

Insecticidal activity

Insecticidal activity was tested against two storage pests Tribolium castaneum and Sitophilus oryzae by dissolving the weighed crude extract in acetone in 3 different concentrations, 0.5, 1 and 2 mg/ml, following Direct Spray technique.

Direct Spray technique

10 test insects were placed inside the petridish and 5 ml quantity of different concentration of the extract was sprayed over the insects using a sprayer. The petridish was covered and survivors were recorded after 24 hrs. All experiments were carried out in triplicates and a control was also maintained without the extract.

RESULTS AND DISCUSSION

A total of 94 Streptomyces strains were screened for Artemia lethality and subsequently insecticidal activity against Tribolium castaneum and Sitophilus oryzae and 76 were found active. The lowest ED50 values were exhibited by the strains SH6, GE13, SCU 13, and STCL7 (6.112ug/ ml), (Table 1). The 76 strains exhibited Artemia lethality was further screened for their insecticidal activity. 59 strains exhibited activity either against Tribolium castaneum or Sitophilus oryzae or both. The strains that exhibited high toxicity against Artemia were also found to possess potential insecticidal activity. The lowest ED50 values for Tribolium castaneum ranged from 431.120 µg/ml to 588.717 µg/ml. For Sitophilus oryzae low ED50 values ranged from 329.686 μ g/ml to 588.717 μ g/ ml. (Table 2). Bioactive compounds are almost always toxic in high doses. Pharmacology is simply toxicology at a lower dose or toxicology is simply pharmacology at a higher dose. Thus, in vivo lethality in simple zoologic organism can be used as a convenient monitor for screening and fractionation in the discovery of new bioactive natural products (McLaughlin et al., 1991 1991 and Chellaram et al., 2012))

Brine shrimp nauplii have been used previously in a number of bioassay systems McLaughlin *et al.*, (1991) have developed this Brine shrimp lethality assay and found a positive correlation between brine shrimp toxicity and cytotoxicity and isolated a number of novel antitumour and pesticidal natural products using this bioassay (Alkofahi *et al.*, 1989 and Prem Anand *et al.*, 2011). In marine environment, the actinomycetes clearly predominate (Fenical, 1993) and many novel compounds have been reported from marine Streptomyces (Takahashi *et al.*, 1989).Around 140 compounds have been reported from marine Streptomyces sp. until 1999 (Dobler *et* *al.*, 2002). Dobler *et al.* (2002) observed that every third out of 500 streptomyces strains showed interesting properties in any respect and they isolated 50 new compounds from 100 selected strains. In the present study, 94 Streptomyces strains isolated from various marine sources were screened for Brine shrimp lethality. As the initial screening with other bacterial strains gave negative results, and Streptomyces sp are potential producers of bioactive compounds, they were chosen for the study.

In the Artemia toxicity assay, four strains exhibited low ED50 values. The SCU13 isolated from sea urchin exhibited the lowest ED50 value of 2.507 µg /ml. The other 3 strains SH6, GE13 and STCL 7 exhibited ED50 values of 6.112 µg/ml. The SH6 strain was isolated from a sponge, GE 13 from gastropod egg and STCL7 from a coral. These isolates seem to be potential source of antitumor compounds as it has already been proven the relationship between Artemia toxicity and cytotoxicity. The structurally novel alkaloid Altemicidin, which is produced by a marine strain of Streptomyces sioyaensis SA-1758, this alkaloid, was detected by screening cultures for toxicity against the common brine shrimp Artemia salina (Fenical, 1993). Osterhage (2001) screened marine derived fungal strains for antitumor activity using Artemia toxicity assay. Tan et al., (2000) isolated Hermitamides A and B, toxic malyngamide type natural product from marine cyanobacterium Lyngbya majuscule using Artemia toxicity bioassay. Further studies dealing with mass culture and extraction of the active compound may provide novel anticancer antibiotics from these Streptomyces strains.

Most of the strains exhibiting low ED50 for Artemia toxicity were also found to exhibit low ED50 value for insecticidal activity. 18 and 8 strains were found to be highly active against the pests Sitophilus oryzae and Tribolium castaneum respectively, out of which, 7 strains exhibited low ED50 values for both the pests. From the marine source insecticidal compounds have been isolated form macroalgae, sponge, coral and parts of mangrove tree. Kabaru and Gichia (2001) screened different parts of the mangrove tree Rhizophora mucronata for insecticidal activity and found that the extract of bark and pith exhibited high toxicity to Artemia salina larvae. Works related to insecticidal activity of marine bacteria not encountered by the author after a through literature search. But in the terrestrial side, the microbial metabolite tetranactin was discovered in the 1970s and later proved to be the first useful pesticide (Tanaka and Okuda, 1992). Today five microbial products such as tetranactin, milbemycin, destomycin, hygromycin B and ivermectin are

Table 1. Artemia toxicity of marine Streptomyces strains						BFC15 BFC20	10 10	0 5	0 2	0 0	0 896.
						BFC21	10	0	0	0	0
Strains	Control	1000	100	10	ED50	BFC22	10	2	0	Ő	8255
		ug/ml	ug/ml	ug/ml	value	SM4	10	7	4	0	272.
		0	0	0		SM21	10	10	7	5	13.4
SA1	10	0	0	0	0	SM23	10	5	1	0	1025
SA4	10	10	7	0	66.792	SM24	10	9	6	3	42.
SB4	10	10	8	0	54.585	SCU8	10	0	0	0	(
SC8	10	0	0	0	0	SCU12	10	7	3	0	337.
SD9	10	10	6	1	63.065	SCU13	10	10	9	7	2.5
SE4	10	8	3	0	253.277	SUR9	10	4	1	0	1756
SF1	10	3	1	0	3976.818	SUR10	10	8	2	0	312
SG6	10	2	0	0	8255.043	JF1	10	10	8	4	17.
SH6	10	10	8	6	6.112	JF4	10	2	0	0	8255
SJ7	10	3	1	0	3976.818	GMA6	10	0	0	0	(
AA12	10	2	0	0	8255.043	GMA7	10	10	6	4	26.
AB12	10	10	7	5	13.440	GMB8	10	2	0	0	8255
AD9	10	5	2	0	896.053	GMB10	10	8	3	Ō	253
AE7	10	0	0	0	0	GMB12	10	10	6	4	26.
AE8	10	4	1	0	1756.398	GMC10	10	10	7	5	13.4
AF3	10	10	6		26.089	ASA7	10	10	6	2	48.
AF11	10	5	1	0	1025.445	ASA8	10	4	1	0	1756
AF14	10	3	1	0	3976.818	ASB3	10	0	0	0	(
AG 11	10	0	0	0	0	ASB4	10	2	0	0	8255
AG3	10	10	6	3	36.670	ASC5	10	4	1	0	1756
AH7	10	10	8	5	11.160	CE11	10	0	0	0	(
AH11	10	2	0	0	8255.043	CE14	10	5	1	0	1025
AH16	10	4	1	0	1756.398	GE2	10	8	3	0	253
AI4	10	10	8	5	11.160	GE10	10	0	0	0	(
AI6	10	0	0	0	0	GE13	10	10	8	6	6.1
AI12	10	7	3	0	337.362	GE14	10	10	6	3	36.
AK14	10	4	1	0	1756.398	BCL5	10	2	0	0	8255
AK17	10	0	0	0	0	BCL10	10	6	1	0	581.
CA1	10	3	1	0	3976.818	BCL14	10	0	0	0	(
CA10	10	7	3	1	299.479	SCL10	10	5	1	0	1025
CB9	10	4	1	0	1756.398	SCL15	10	9	3	1	153.
CB15	10	0	0	0	0	SCL18	10	3	0	0	2950
CC6	10	6	2	0	581.238	STCL9	10	2	0	0	8255
CC7	10	10	6	3	36.670	STCL17	10	10	8	6	6.1
CC12	10	10	7	4	20.978	STCL20	10	10	7	5	13.4
CC13	10	0	0	0	0	OBSA12	10	10	8	4	17.
BFA10	10	8	3	0	253.277	0BSA17	10	9	5	2	76.
BFA20	10	3	1	0	3976.818	0BSA18	10	0	0	0	(
BFA22	10	10	7	5	13.440	0BSB9	10	10	8	4	17.
BFB1	10	0	0	0	0	SPF4	10	7	3	1	299
BFB13	10	10	8	4	17.205	SPE5	10	8	2	0	312
BFB18	10	5	2	0	896.053	SPE9	10	9	3	1	153
BFB19	10	10	8	5	11.160	SOE8	10	10	7	4	20.
BFB20	10	3	0	0	2950.232	BFC17	10	10	7	5	13.4

J PURE APPL MICROBIO, 7(4), DECEMBER 2013.

Strain Control $T. castaneum$ S. oryzae EDS 0.5 1 2 0.5 1 2 $T. castaneum$ $T. castaneum$ SA4 10 0 0 0 0 1 3 0 SB4 10 0 1 2 0 1 3 0 SD9 10 0 0 0 0 1 2 0 SE4 10 0 2 4 1 2 5 2320.906 SF1 10 0 0 0 0 0 0 0 SG6 10 0 0 0 0 0 0 0 SH6 10 3 5 8 5 8 10 903.697 SJ7 10 0 0 0 0 1 2 0	0 <i>S. oryzae</i> 3030.468 3030.468 3030.468 2106.891 3030.468 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S. oryzae 3030.468 3030.468 2106.891 3030.468 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3030.468 3030.468 3030.468 2106.891 3030.468 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3030.468 3030.468 3030.468 2106.891 3030.468 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3030.468 3030.468 2106.891 3030.468 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3030.468 2106.891 3030.468 0
SE4 10 0 2 4 1 2 5 2320.906 SF1 10 0 0 0 0 1 3 0 SG6 10 0 0 0 0 0 0 0 SH6 10 3 5 8 5 8 10 903.697 SJ7 10 0 0 0 1 2 0	2106.891 3030.468 0
SF1 10 0 0 0 1 3 0 SG6 10 0 0 0 0 0 0 0 SH6 10 3 5 8 5 8 10 903.697 SJ7 10 0 0 0 1 2 0	3030.468 0
SG6 10 0	0
SH6 10 3 5 8 5 8 10 903.697 SJ7 10 0 0 0 1 2 0	
SJ7 10 0 0 0 1 2 0	516.796
	3030.468
AA12 10 0 0 0 0 1 5 0	3033.291
AB12 10 3 6 8 5 8 10 822.171	516.796
AD9 10 0 1 2 0 2 4 3030.468	2319.542
AE8 10 0 0 0 0 1 2 0	3030.468
AF3 10 3 6 8 5 7 9 822.171	517.976
AF11 10 0 0 0 0 2 4 0	2319.542
AF14 10 0 0 0 0 0 0 0 0	0
AG3 10 0 1 2 0 3 5 3030.468	1829.880
AH7 10 4 7 9 6 8 10 3030.468	431.120
AH11 10 0 0 0 0 1 2 0	3033.291
AH16 10 0 0 0 0 0 2 4 0	2319.542
AI4 10 4 8 10 5 8 10 588.717	516.796
AI12 10 0 0 0 1 3 4 0	2602.109
AK14 10 0 0 0 0 1 2 0	3030.468
CA1 10 0 1 2 0 2 4 3030.468	2319.542
CA10 10 0 2 3 0 1 2 3071.386	3030.468
CB9 10 0 0 0 0 1 2 0	3030.468
CC6 10 0 0 0 0 0 0 0	0
CC7 10 1 3 5 2 5 7 1930.590	1107.669
CC12 10 4 7 9 5 8 10 3030.468	516.796
BFA10 10 0 0 0 0 1 2 0	3030.468
BFA20 10 0 0 0 0 0 0 0	0
BFA22 10 4 6 8 4 8 10 701.279	588.717
BFB13 10 5 8 10 6 9 10 516.796	422.054
BFB18 10 0 0 0 0 0 0 0	0
BFB19 10 3 6 8 4 8 10 822.171	588.717
BFB20 10 0 0 0 0 0 0 0	0
BFC17 10 5 8 10 6 8 10 516.796	431.120
BFC20 10 0 0 0 0 1 2 0	3030.468
BFC22 10 0 0 0 0 0 0 0	0
SM4 10 0 0 0 0 0 2 3 0	3071.386
SM21 10 5 7 9 5 8 10 517.976	516.796
SM23 10 0 0 0 0 1 2 0	3030.468
SM24 10 0 1 2 0 3 5 3030.468	1829.880
SCU12 10 0 0 0 0 1 2 0	3030.468
SCU13 10 6 8 10 7 10 10 431.120	360.627
SUR9 10 0 0 0 0 0 2 3 0	3071.386
SUR10 10 0 1 2 0 0 0 3030.468	0
JF1 10 4 7 9 5 8 10 3030.468	

 Table 2. Insecticidal activity of marine Streptomyces strains

J PURE APPL MICROBIO, 7(4), DECEMBER 2013.

Continue Table 2.										
JF4	10	0	0	0	0	0	0	0	0	
GMA7	10	0	1	2	1	3	5	3030.468	1930.590	
GMB8	10	0	0	0	0	1	2	0	3030.468	
GMB10	10	0	0	0	0	0	0	0	0	
GMB12	10	1	3	4	2	4	6	2602.109	1425.967	
GMC10	10	6	8	10	6	9	10	431.120	422.054	
ASA7	10	0	1	2	0	0	0	3030.468	0	
ASA8	10	0	0	0	0	0	0	0	0	
ASB4	10	0	0	0	0	0	0	0	0	
ASC5	10	0	0	0	0	0	0	0	0	
CE14	10	0	0	0	0	1	2	0	3030.468	
GE2	10	0	2	3	0	0	0	3071.386	0	
GE13	10	5	8	10	7	10	10	516.796	360.627	
GE14	10	0	1	2	0	2	4	3030.468	2319.542	
BCL5	10	0	0	0	0	0	0	0	0	
BCL10	10	0	1	2	0	1	2	3030.468	3030.468	
SCL10	10	0	0	0	0	0	0	0	0	
SCL15	10	0	2	4	0	0	0	2319.542	0	
SCL18	10	0	0	0	0	0	0	0	0	
STCL9	10	0	0	0	0	0	0	0	0	
STCL17	10	6	9	10	7	9	10	422.054	329.686	
STCL20	10	4	6	8	5	8	10	701.279	516.796	
OBSA12	10	3	6	8	4	7	9	822.171	822.171	
0BSA17	10	0	0	0	0	2	4	0	2319.542	
0BSB9	10	3	6	8	5	8	10	822.171	516.796	
SPE4	10	0	1	2	0	2	4	3030.468	2319.542	
SPE5	10	0	0	0	0	0	0	0	0	
SPE9	10	0	2	4	0	3	5	2319.542	1829.880	
SQE8	10	4	7	9	5	9	10	822.171	496.243	

2836 CHELLARAM et al.: TAXONOMIC DIVERSITY OF MARINE MICROORGANISMS

being used as pesticides in agriculture and all these compounds have been isolated from terrestrial *Streptomyces* sp. (Mishima, 1983). As the potential for terrestrial Streptomyces sp. for the production of insecticidal compounds have been well established, further works regarding mass culture and isolation of active compounds from these marine Streptomyces sp. may be productive.

ACKNOWLEDGMENTS

Authors deliver their gratitude to SERB (Young Scientist Scheme, No.SR/FT/LS-23/2010) Govt. of India for financial assistance

REFERENCES

 Alkofahi, A., Rupprecht, J.K., Anderson, J.E., Mc Laughlin, K.L., Mikolajczah, K.L., and ScoH, B.A., Search for new pesticides from higher plants, In : Insecticides of plant origin, (eds)

J PURE APPL MICROBIO, 7(4), DECEMBER 2013.

Arnason, J.T., Philogene, B.J.R., and Morand, P. ACS Symposium Series 387, American Chemical Society, Washington DC, 1989, pp 25-43.

- 2. Anbuselvi, S., C.Chellaram, R.Jeyanthi, S. Jonesh and J.K.P. Edward. Bioactive Potential of Coral Associated Gastropod, *Trochus tentorium* of Gulf of Mannar, Southeastern India. *Journal of Medical Sciences*, 2009: **9**(5): 240-244
- Chellaram, C., S. Venkatesh, T. Prem Anand, G. Kuberan, A. Alex John and G. Priya. Antimicrobial properties of insect gut associated bacteria. *World Journal of Medical Sciences*, 2012: 7(4): 260-263.
- 4. Chellaram, C and J.K.P. Edward. Improved recoverability of bacterial strains from soft coral, *Lobophytum* sp. for antagonistic activity. *J Pure Appl Microbiol*. 2009: **3** (2): 649-654.
- Chellaram, C., S. Sreenivasan, T.P. Anand, S. Kumaran, D. Kesavan and G. Priya. Antagonistic bacteria from live corals, Tuticorin coastal waters, Southeastern India. *Pakistan Journal of*

Pharmaceutical Sciences, 2011: 24(2): 175-181.

- Chellaram, C., P. Raja, A. Alex John and S. Krithika. Antagonistic effect of epiphytic bacteria from marine algae, Southeastern India. *Pakistan Journal of Biological Sciences*, 2013: 16(9): 431-434.
- 7. Chelllaram, C., Prem Anand, T., Felicia Shanthini, C., Arvind Kumar, B and Sidharth P Sarma. Bioactive peptides from epibiotic *Pseudoalteromonas* strain P1 APCBEE Procedia. 2012; **2**: 37-42.
- Chimeno, R.I.F., Canedo, L, Espliego, F., Gravalos, D., Calle, F.D.L., and Puentes, J.L.F., 1B-96212 a novel cytotoxic macrolide produced by a marine Micromonospora. I. Taxonomy, Fermentation, Isolation, and Biological activities. *J.Antibiotics*, 2000: 53(5): 474-478.
- Dobler, I.W., Beil, W., Long, S., Meiners, M., and Laatsch, H., Integrated approach to explore the potential of marine microorganisms for the production of bioactive metabolites, Ad. Bio. Eng., Biotech special edition "Tools and applications of biochemical engineering". 2002: 74:207-238.
- Duke, S., O., Men, J. J., and Plimmer, J.R., Challenges of pest control with enhanced toxicological and environmental safety, an overview. In : Pest control with enhanced environmental safety, ACS Symposium series 524, (ed), Duke, S.O., Menn, J.J., Plimmer, J.R., American chemical society, Washington DC,1993; 1-13.
- Fenical, W., and Jensen, P.R., Marine microorganisms: a new biomedical resource, *Marine Biotechnology*, 1993: 1, Pharmaceutical and Bioactive natural products Ed. Attaway, D. H., Zaborsky, O.R., New York, Plenum Press. 500.
- Gailliot, F.P., Initial extraction and product capture, In: *Methods in Biotechnology*, 1998: 4, Natural Products Isolation, (ed) R.J.P., Cannell, Humana Press, NJ, USA, 53-89.
- Kabaru, J.M., and Gichia, L, Insecticidal activity of extracts derived from different parts of the Mangrove free *Rhizophora mucronata* (Rhizophoraceae) Lam. against three arthropods. *Afr. J. Sci. Tech.*, 2001: 2: 44-49.
- 14. Kennett, J.P., Introduction, In: Marine pharmacology, Prospects for the 1990, California Sea Grant workshop report No.T-CSGCP-022, University of California. La Jolla, California, 1990: 9-10.
- Mc Laughlin, J.L., Chang, C.J., and Smith, D.L.,"Bench-top" bioassays for the discovery

of bioactive natural products; an update, In : *Studies in natural products chemistry*, 1991: **9**, (ed) Atta-ur-Rahman, Elsevier, Amsterdam, 383-407.

- Mishima, H., Milbemycins, a family of macrolide antibiotics with insecticidal activity, In : Pesticide chemistry : *Human Welfare and the Environment*, 1983: 2, Natural products, (ed) Takahashi, Pergamon Press, Oxford, 129-134.
- Munro, M.H.G., Blunt, J.W., Dumdei, E.J., Hickford, S.J.H., Lill, R.E., Li, S., Batters Hill, N., and Duckworth, A.R., The discovery and development of marine compounds with pharmaceutical potential. *J. Biotechnol.*, 1999: 70:15-25.
- Nolan, R.D., and Cross, T., Isolation and screening of actinomycetes, In: Actinomycetes in Biotechnology, (eds) Goodfellow, M., Williams, ST., and Mordarski, M., Academic Press, London, 1988: 1-32.
- Okami, Y., Horta, K., Yoshida, M., Ikeda, D., Kondo, S., and Umezawa, H., New aminoglycoside antibiotics, *istamycins A and B. J Antibiotics*, 1979: **32**: 964-966.
- Osterhage, V.C., Isolation structure determination and biological activity assessment of secondary metabolites marine -derived fungi Ph.D thesis, Technischen Universitat Carolo wilhelmina Zu Braunschweig, 2001: 1-166.
- 21. Prem Anand, T., C. Chellaram, and Felicia Shanthini, C. Isolation and screening of marine bacteria producing antibiotics against human pathogens. *International Journal of Pharma and Bio Sciences*,2011: **2**(4): 257-271.
- Proksch, P., Edrada, R.A., Ebel, R., Drugs from the sea - current status and microbiological implications. *Appl. Microbiol. Biotechnol.*,2002: 59:125-134.
- Takahashi, A., Kurasawa, S., Ikeda, D., Okami, Y., and Takeuchi, T., Altemicidin, a new acarieidal and antitumor substance I, Taxonomy, fermentation, isolation and physico-chemical and biological properties. J. Antibiotics, 1989: 42: 1556-1561.
- 24. Tan, L.T., Okino, T., and Gerwick, W.H., Hermitamides A and B, toxic malyngamide type natural products from the marine cyanobacterium *Lyngbya majuscula*. J.Nat.Prod. 2000: **63**: 952-955.
- 25. Tanaka, Y., and Okuda, S., Insecticides, Acaricides and anticoccidial agents, In : The search for bioactive compounds from microorganisms, Springer Verlag, NY, 1992: 237-262.

J PURE APPL MICROBIO, 7(4), DECEMBER 2013.