Detection of *Helicobacter pylori* and Human Papilloma Virus in Laryngeal Papillomatosis of Patients in Rasul Akram in Tehran in 2011

Kh. Moridi¹, R. Hosseini Doust², Z. Goudarzi¹, H. Lashini¹, D. Esmaeili² and E. Saberfar¹*

¹Applied Virology Research center and Department of Microbiology, Faculty of Medical Science, Baqyiatallah University, Tehran, Iran.
²Applied Microbiology Research center and Department of Microbiology, Faculty of Medical science, Baqyiatallah University, Tehran, Iran.

(Received: 22 July 2013; accepted: 15 September 2013)

Laryngeal papillomatosis is the most common of benign laryngeal neoplasms, different factor may play role in incidence of laryngeal papiloma but *Human papillomavirus* and may be *Helicocabacter Pylori* one of the most important of them. Aim in this study is the presence of *Helicobacter pylori* and *Human papillomavirus* in laryngeal papiloma. Polymerase chain reaction was employed for detection of *Helicobacter pylori* and *Human papillomavirus* DNA from 41 biopsy samples of laryngeal papiloma. Three samples of 41 biopsy samples for the presence of *HP* DNA and 19 samples from 41 biopsy of patient for *HPV* DNA were positive. At this study we evaluate the role of *Helicobacter pylori* and *human papillomavirus* on laryngeal papiloma. The author found that although, *Helicobacter pylori* is no dominant agent in incidence of laryngeal papiloma but *Human papillomavirus* can be a dominant risk factor for development of it.

Key word: *Helicobacter pylori* (HP), *Human Papilloma Virus* (HPV), Polymerase Chain Reaction (PCR).

Laryngeal papillomatosis (LP) is one of the most common of laryngeal tumor in the world. It is able to recurrence in patient especially in children so that it is also known as recurrent respiratory papillomatosis (RRP). It has been estimated that about 84% of laryngeal tumors that related to LP are benign, that some patients developed to some signs like asthma, croup and chronic bronchitis. Primary symptoms of LP is noisy breathing, chronic cough, difficult swallowing, snorting, snoring and breathing problems during sleep but occasionally convert to respiratory distress and air way obstruction¹. Different rick factor are recognized for development of LP, Such as alcohol, smoking, *Human Papilloma Virus* (HPV) and *Helicobacter pylori*. In several studies, it has been revealed that HPV infection increased the risk of developing LP. HPV is a DNA virus that causes a variety of skin and mucous lesions including skin and vaginal wart and some cancers in oral cavity. Until now about 100 types of HPV were recognized, and of them, HPV 6, 11 is the most important cause of development of LP²⁻⁵. This is a hypothesis that *Helicobacter pylori* (HP) can be a primary factor to HPV for developing LP⁶⁻⁹. HP is a motile, gram negative, catalase and oxidase positive bacteria that produce strong urease¹⁰. HP can increased
proliferation and induce apoptosis cells, and through destruction of mucosal immunity can facilitate to exposure of laryngeal tissue to some carcinogen agents such as HPV. The CagA protein is a pathogenesis factor that can activate tyrosine kinase and can restructure host cell's skeleton. Various methods have been used for detection of HP and HPV, because of the sensitivity and specificity of their methods is not the same, their results are different. The aim of this study was to investigate the effect of HP and HPV in development of LP individually or synergistically.

MATERIALS AND METHODS

41 biopsy samples of patient with Laryngeal papillomatosis were collected in normal saline. All samples were stored at -80°C until they were used. phenol-chloroform method was employed for DNA extraction of both of HP and HPV from 41 biopsy samples. Extracted DNA was diluted in final volume of 50 ml elution buffer. PCR

HP DNA was detected by PCR assay using pair primers associated with the cagA gene: P1 5’ AAAATGGAAGCGAAAGCTCA 3’ and P2 5’ CGGCTAGCACTTGCTCTACC at -3’. PCR reaction were done in 25µl reaction contained the following: 0.5µl of the dNTP, 1µl of MgCL₂ (50 mM), 2.5µl PCR buffer, 0.2µl Taq DNA Polymerase (5U), 13.8µl of deionized water, 1µl of both of the primers (10pmol/µl), and 5µl template DNA. Temperature profile of PCR was comprised 5min for preancubation at 94°C, followed by 40 cycles of 30 sec at 94°C, 30 sec at 50°C and 40 sec at 72°C, final extension was performed for 5 min at 72°C. HPV DNA was detected by PCR assay using pair primers associated with the My 09: 5’ CGTCC(A/C)A(A/G)(A/G)GA(A/T)CTAATTCAAA(C/T)ATGG - 3’ and My11: 5’ GC(A/C)GGA(A/T)CTATAA(A/G)GGA(A/T)ACTGATC - 3’. PCR reaction were done in 25µl reaction contained the following: 0.2µl of the dNTP, 1.5µl of MgCl₂ (50 mM), 2.5µl PCR buffer, 0.5µl Taq DNA Polymerase (5U), 18.3 µl of deionized water, 0.5µl of both primer, and 1ml template DNA. Temperature profile of PCR for HPV was comprising 5min for preancubation at 95°C, followed by 35 cycle of 30 sec at 95°C, 30 sec at 55°C and 30 sec at 72°C, final extension was performed for 1 min at 72°C. The PCR product were isolated by 1.5% agarose gel electrophoresis, Then stained with ethidium bromide and therefore visualized by UV transiluminator.

Table 1. The result of the PCR assay

<table>
<thead>
<tr>
<th>Number of samples</th>
<th>Male</th>
<th>Female</th>
<th>HP DNA Positive</th>
<th>HPV DNA Positive</th>
<th>HP&HPV DNA Positive simultaneously</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>30</td>
<td>11</td>
<td>3</td>
<td>19</td>
<td>Zero(0)</td>
</tr>
</tbody>
</table>

Fig. 1. The result of PCR for samples HPV DNA

Fig. 2. The results of PCR for cagA of HP
RESULTS

Amplification of DNA with PCR disclosed that of 41 biopsy samples, HP DNA was detected in 3 (%7.3) samples (Table 1). And HPV DNA was detected in 19 (%46.34) samples (Fig. 1, 2). Moreover none of samples were not positive for both of HP and HPV infection.

CONCLUSION

HP and HPV infection was documented as risk factor for LP development. In several studies for HP detection from LP, various methods are employed. Urease assay is unreliable because it is not specific for HP and some bacteria such as some species of Corynebacterium, streptococcus, proteus can show positive reaction as the same as HP. In serological diagnoses are used various kits that their sensitivity and specificity of them are different, so that the results of them are not the same. For both of the HP and HPV agent, new molecular assay have been developed which included the PCR, Real-time PCR, Immunohistochemical methods and test. Detection of DNA by PCR is method of rapid, reliable and more ever at this method there is no need to radioactive material or complex apparatuses. In this study, PCR reaction was employed for detection of HP and HPV DNA from 41 biopsy samples of laryngeal papillomatosis. 3 samples of 41 were positive for HP DNA and 19 samples of them were positive for HPV DNA. Several studies evaluated only one of the HP or HPV DNA from LP. In a study, Dr. Paul Diclas analysed 27 cases of Laryngeal Papilloma for the genome of HPV6, 11, 16, 18 by slot-blot hybridization, that finally 48% from samples was positive about HPV11 and 11% of samples was positive for HPV6, 11, 16 simultaneously, at the same project Nicollas showed a co-infection with HPV6, 11 in the 11 year old girl with laryngeal papillomatosis by real-time PCR. But about HP, Alititiz research the presence of HP DNA in normal tissue and squamous cell carcinoma (SCC) of larynx by PCR that their results showed that HP can play a role in SCC of larynx, or at the other study Xian-Lu indicated that HP can be a risk factor for neoplasm of larynx. In conclusion in our study we find that, HP has no potential role in incidence of LP but HPV can play a role in occurrence or accelerate incidence of LP. But HP with destruction of mucosal immunity can facilitate to exposure of laryngeal tissue to some carcinogen agents such as HPV, however it is need to more epidemiological and molecular study for better and more reliable result.

REFERENCES

12. Argent RH, Kidd M, Owen RJ, Thomas RJ, Limb MC, Atherton JC. Determinants and consequences of different levels of CagA phosphorylation for clinical isolates of...