Protective Effects of Ethanol Extract from Termite Fungus Garden on the SH-SY5Y Cell against Oxidative Damage

Lirong Yan¹, Ming Yu¹, Wei Han¹, Yanhua Chen¹, Hongtu Zhou¹, Wenbing Wang² and Mandi Miao¹

¹Affiliated Hospital of Jiangsu University, Zhenjiang - 212 001, Jiangsu Province, China. ²Institute of life science, Jiangsu University - 212 013, China.

(Received: 08 April 2013; accepted: 25 May 2013)

To determine the protective effects of ethanol extract from termite fungus garden on the SH-SY5Y cell against oxidative stress induced by H_2O_2 . SH-SY5Y cells were cultured in the medium as the normal control group. H_2O_2 was added into SH-SY5Y cells to establish the cell model of oxidative damage as the model control group. Different concentrations of ethanol extract from termite fungus garden and the reagent H_2O_2 were added into the culture medium of SH-SY5Y in sequence as the prevention groups. Ethanol extract from termite fungus garden added into the cell culture medium induced by H_2O_2 was considered as the protection groups. Cell activity of SH-SY5Y was determined with MTT assay, and the activities of SOD (Superoxide Dismutase), GSH (Glutathione), and content of MDA (Malondialdehyde) were also detected in each group. Cell suruvival rate in the prevention group. All of the protection groups had 24.2% to 32.5% improvement on survival rate as compared with that in the model control group. The ethanol extract from termite fungus garden plays an important role in protecting SH-SY5Y cell through its anti-oxidative effect on H_2O_2 .

Key words: termite fungus garden; antioxidant; SH-SY5Y.

Free radical theory is one of the most important mechanisms of aging. It is known that free radical is apparently participated in arteriosclerosis, cornoary heart disease, diabetes, Alzheimer's disease, Parkinson's disease, ect¹⁻⁶. The oxidant-antioxidant balance is of great significance in the prevention and protection of age-related diseases⁷. We have used termite fungus garden (a free radical scavenger) to make antioxidant research because of scavenging superoxide radicals and resisting lipid peroxidation⁸. This study was further to explore the protective effects of termite fungus garden on the SH-SY5Y cell against oxidative stress.

MATERIALSAND METHODS

Materials

Termite fungus garden was collected and identified by the Termite Control Center of Jurong Forest. Human neuroblastoma cells (SH-SY5Y) were donated by Institute of Life Science in Jiangsu University. DMEM culture medium and trypsin, fetal bovine serum (FBS) were bought from Gibco Company and Lanzhou Minhai Biological Engineering CO, Ltd. respectively. MTT (Methylthiazolyldiphenyl-tetrazolium bromide), all other reagents and experimental equipments were supplied by Institute of Life Science in Jiangsu University. The kit of SOD (Superoxide dismutase), MDA (Malondialdehyde), GSH (Glutathione) were provided by Nanjing Jiancheng Biological Engineering Institte.

^{*} To whom all correspondence should be addressed. E-mail: wooyoo4@gmail.com

Preparation of ethanol extract from termite fungus garden

Ten grams of termite fungus garden powder were socked in 150 mL ethanol, and were heated and extracted for 2-hr. One hundred and fifty millmiter of ethanol were added in the residue to extract for another 2-hr. After that, the distillates were all mixed together.

Cell culture

Human neuroblastoma cells (SH-SY5Y) were cultured in DMEM with 10% FBS, and placed in the incubator with conditon of 5% CO_2 , saturated humidity and 37°C. Culture medium was replaced every 2^ÿ3 days, and digested with 0.25% trypsinthe when cells were generated.

Effect of ethanol extract from termite fungus garden on SH-SY5Y

Model establishment of SH-SY5Y oxidative damage

 H_2O_2 , which final concentration was 300 μ mol/L, was cultured with SH-SY5Y for an hour, cell activity was dectected by MTT and SOD, MDA and GSH were also measured respectively.

u\$ Preventive effects of ethanol extract on SH-SY5Y oxidative damage

SH-SY5Y cells were cultured in 96-well plate, injected with different doses (200, 175, 150, 125, 100 μ L) of termite fungus garden ethanol extract after 24-hr, and then added H₂O₂ into it after another 24-hr, while those in the model control group injected with DMSO solution and final concentration was adjusted to 0.1%. After 1-hr, cell activity was detected by MTT assay, so did the activities of SOD, GSH and content of MDA. **Protective effect of ethanol extract on SH-SY5Y oxidative damage**

The experimental procedures of antioxidative damage were pretty much the same as former one except that both termite fungus garden ethanol extract and H_2O_2 were added into the SH-SY5Y cells simultaneously.

Measurement of cell activity with MTT assay

Twenty microlitre MTT Reagent was added into each well, then placed the plate under the condition of 5% CO_2 saturated humidity and 37°C for 4-hr, removed supernatant and added DMSO 150 uL/well, which were set it on shaking bed with low speed until the crystals dissolved compelely. Absorbance was recorded at 490 nm and survial rate of cells caculated in different time period according to OD (optical density). Survial rate of cells" (model control group OD

prevention group OD or protection group OD)/ model control group OD $\times 100\%$. Reapted it for 3 times.

Measurement of SOD, MDA and GSH

The prosess of experiment was strictly mesasured in accordance with the procedure of the kit.

Data analysis

All the data obtained using SPSS 17.0 statistical software for test. ANOVA analysis of variance between the two groups was for the q test. Differences for all data were considered statistically significant at P < 0.05.

RESULTS

Effect of termite fungus garden on SH-SY5Y oxidative damage

Preventive effect of the termite fungus garden ethanol extract on the SH-SY5Y induced by H,O,

Different doeses of termite fungus garden ethanol extract and H_2O_2 were injected into the culture medium of the SH-SY5Y cells in sequence, then detected the cell activity. The result showed

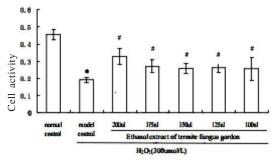
Concentrations of ethanol	Culture medium (U/mL)	
extract of termite fungus garden	Prevention	Protection
0 uL (added nothing)	14.65±0.24	14.27±0.19
$0 \text{ uL (with H_2O_2)}$	6.43±0.13 *	6.54±0.21*
200 uL	10.89±0.09 **	9.68±0.12**
175 uL	10.23±0.16 **	9.57±0.23**
150 uL	9.98±0.21 **	9.47±0.22**
125 uL	9.58±0.28 **	8.87±0.12**
100 uL	9.27±0.23 **	8.48±0.17**

Table 1. Activity of SOD in the culture media of SH-SY5Y cell ($\overline{x} \pm s, n = 5$)

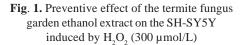
J PURE APPL MICROBIO, 8(1), FEBRUARY 2014.

Concentrations of ethanol	Culture medium (U/mL)	
extract of termite fungus garden	Prevention	Protection
0 uL (with H_2O_2)	0.64±0.03*	0.65±0.02*
200 uL	0.32±0.09**	0.42±0.05**
175 uL	0.39±0.06 **	0.48±0.03**
150 uL	0.40±0.03 **	0.50±0.02**
125 uL	0.44±0.02 **	0.54±0.02**
100 uL	0.48±0.03 **	0.55±0.17**

Table 2. Content of MDA in the cell culture media of SH-SY5Y cell $(\pm s, n = 5)$

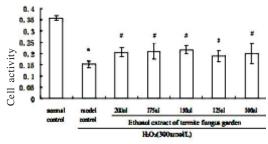

Table 3. Content of GSH in the cell culture media of SH-SY5Y cell ($\pm s, n = 5$)

Concentrations of ethanol	Culture medium (U/mL)	
extract of termite fungus garden	Prevention	Protection
0 uL (added nothing)	0.875±0.042	0.817±0.111
0 uL(with H_2O_2)	0.176±0.021*	0.154±0.025*
200 uL	0.631±0.09**	0.499±0.121
175 uL	0.591±0.016**	0.457±0.123**
150 uL	0.553±0.027**	0.411±0.202**
125 uL	0.491±0.018**	0.387±0.112**
100 uL	0.427±0.023**	0.348±0.176**


that $300 \,\mu$ mol/L H_2O_2 led to an obviouse decrease in cell activity and H_2O_2 had effect of oxidative damage on SH-SY5Y cells. Compared with H_2O_2 injury group, cell sruvival rate in the ethanol extract pretreatment group was increased by 27.2% to 44.5%. (Fig. 1)

Protective effect of the termite fungus garden ethanol extract on the SH-SY5Y induced by H₂O₂

Both the termite fungus garden ethanol extract and H_2O_2 were simultaneously added into the culture medium of the SH-SY5Y cells for 1-hr, then detected the cell activity. The result showed


(Average \pm SD, n=5;"p< 0.05 vs control, "p< 0.05 vs 300 $\mu mol/L~H_2O_2$)

the protection group had a 24.2% to 32.5% \dot{x} mprovement on survival rate compared with the model control group. (Fig.2) Decreased cell death indicated that termite fungus garden of the ethanol extract had inhibitory activities against oxidative injury in SH-SY5Y cells induced by H₂O₂.

Activities of SOD, GSH and content of MDA

The activities of SOD and GSH were detected when SH-SY5Y cells cultured with H_2O_2 (final concentation: 300 µmol/L) in an hour. The result showed that activities of SOD and GSH significantly decreased, but the content of MDA

(Average \pm SD, n=5;"p< 0.05 vs control, "p< 0.05 vs 300 $\mu mol/L~H_2O_2$)

Fig. 2. Protective effect of the termite fungus garden ethanol extract on the SH-SY5Y induced by H₂O₂ (300 μmol/L)

J PURE APPL MICROBIO, 8(1), FEBRUARY 2014.

increased compared with the normal control group ($P \le 0.05$). To be treated with termite fungus garden with different concentration, we found that the content of MDA is changing corresponded with it. (Table 1-3)

DISCUSSION

Hydrogen peroxide (H_2O_2) , the most reactive and destructive reactive oxygen species, oxidizes fatty acids, DNA and proteins, thus lipid peroxidation and membrane fluidity reduction^[9,10]. Also, H_2O_2 increases oxidative damage to mtDNA, eventually leads to cell death^[11]. However, these effects of H_2O_2 can be delayed or restrained by antioxidants. Studies have shown that oxidative damage plays an important role in some degeneration diseases including Parkinson's disease and Alzheimer's disease. SH-SY5Y cell line, derived from neuroblastoma cells, is the most common cell model which used to explore the mechanism of neurodegenerative disease^[12].

Injury from H_2O_2 in SH-SY5Y cells was used as oxidative damage model. The results showed that 300 µmol/L H_2O_2 led to an obviouse decrease in cell activity and H_2O_2 had effect of oxidative damage on SH-SY5Y cells. Cell sruvival rate in the ethanol extract prevention group was increased by 27.2% to 44.5% compared with model control group, which suggested termite fungus garden of the ethanol extract had characteristic of preventing oxidation. The protection group had a 24.2% to 32.5% improvement on survival rate compared with the model control group which indicated that termite fungus garden of ethanol extract were observed to be protected strongly from oxidation damage.

After SH-SY5Y cells were cultured with H_2O_2 at concentation of 300 µmol/L for an hour, the activity of antioxidant enzymes SOD and GSH were detected. Result showed that activity of SOD and GSH were significantly decreased, but the content of MDA was increased with the change of different concentration of termite fungus garden.

Superoxide dismutase (SOD) acts as an important member of keeping the balance between oxidation and anti-oxidation, which removes superoxide anion radical and protects cell from damage. Decreased activity of SOD induces peroxide which caused by unsaturated fatty acids, forms lipofuscin and alters the activites of proteins

J PURE APPL MICROBIO, 8(1), FEBRUARY 2014.

and enzymes^[13,14]. Therefore, the activity and content of SOD reflect abilities of clearing free radicals. Malondialdehyde (MDA) is a product of lipid peroxides, often measured together with SOD. It indirectly reflects the extents of cell menbrane damage attacked by free radical¹⁵. Reactive oxygen species are produced through enzyme and nonenzyme system, promote lipid peroxidation of polyunsaturated fatty acids (PUFA) of biomembranes, leading to formation of lipid peroxides¹⁶. Researches have shown that glutathione peroxidase (GSH) has effect on shifting redox status of vitamine E towards deoxidation. Shortage or depletion of GSH promotes chemicals to produce or aggravate toxic effect. This study showed that GSH specifically catalyzed to eliminate harnful products and block the chain reactions of lipid peroxide within cells. In addition, GSH also acts as a scavenger and clears away low molecular including O₂-, H₂O₂, LOOH which may be related to an increase of oxidative damage¹⁷. Consequently, activity of GSH is a crucial factor of antioxidant capacity.

In this experiment, positive effects of termite fungus garden ethanol extract have been found on the prevention and protection of agerelated diseases, but its mechanisms are still unknow. More research is needed to further study.

REFERENCES

- Lönn ME, Dennis JM, Stocker R. Actions of "antioxidants" in the protection against atherosclerosis. *Free Radic Biol Med*, 2012; 53(4): 863-884.
- AA Rahsepar, Mirzaee A, Moodi F, Moohebati M, Tavallaie S, Eshraghi A, Alavi MS, Khorashadizadeh F, Pourghadamyari H, Paydar R, Amini M, Khojasteh R, Mousavi S, Sahebi M, Ghayour-Mobarhan M, Ferns GA. Prooxidant-antioxidant balance and antioxidized LDL antibody level values and cardiac function in patients with coronary artery disease. *Cardiology*, 2012; **122**(4): 203-209.
- Goodwill AG, Frisbee JC. Oxidant stress and skeletal muscle microvasculopathy in the metabolic syndrome. *Vascul Pharmacol*, 2012; 57(5-6):150-159.
- Ming Yu, Lei Qin, Zhao Wang, Xiaohong Lu, Ying Zhu, Wenhui Leng, Xuan Wang. Effects of MCI-186 on intracellular calcium ion concentration and membrane fluidity of

hippocampal neurons in a rat model of Alzheimer's disease. *Neural Regeneration Research*, 2011; **6**(29): 2245-2250.

- Ming Yu, Shujuan Li, Wenhui Leng, Ying Zhu, Han Chen, Yingquan Wu, Lirong Yan. Protective effect of MCI-186 on oxidative damage in a cell model of Alzheimer's disease. *Neural Regeneration Research*, 2010; 5(16): 1226-1230.
- Mansouri MT, Farbood Y, Sameri MJ, Sarkaki A, Naghizadeh B, Rafeirad M. Neuroprotective effects of oral gallic acid against oxidative stress induced by 6-hydroxydopamine in rats. *Food Chem*, 2013; 138(2-3):1028-1033.
- Raukas M, Rebane R, Mahlapuu R, Jefremov V, Zilmer K, Karelson E, Bogdanovic N, Zilmer M. Mitochondrial oxidative stress index, activity of redox-sensitive aconitase and effects of endogenous anti- and pro-oxidants on its activity in control, Alzheimer's disease and Swedish Familial Alzheimer's disease brain. Free Radic Res, 2012, 46(12):1490-1495.
- Cao J, Sun T, Zhang M. Anti-inflammatory effect of termitarium. J Chin Med Mater, 2006; 29(10):1011-1013.
- De la Monte SM, Ganju N, Feroz N, Luong T, Banerjee K, Cannon J, Wands JR. Free radical injury is sufficient to cause some Alzheimertype molecular abnormalities in human CNS neuronal cell. *J Alzheimer's Disease*, 2000, 2(3-4): 261-281.
- 10. Maiese K, Chong ZZ. Insights into oxidative stress and potential novel therapeutic targets for Alzheimer disease. *Restorative neurology and*

neuroscience, 2004; 22(2): 87-104.

- Tsutsui H, Kinugawa S, Matsushima S. Mitochondrial oxidative stress and dysfunction in myocardial remodelling. *Cardiovascular research*, 2009; **81**(3): 449-456.
- Feng Bo, Wang Rong, Sheng shu-li. Mimic model of nerve cells in the study of neurodegenerative disease: Origin, characteristics and application of human neuroblastoma cell line SH-SY5Y. *Chinese Journal of Clinical Rehabilitation*, 2006; 10(6): 121-123.
- McCord JM, Edeas MA. SOD, oxidative stress and human pathologies: a brief history and a future vision. *Biomedicine & pharmacotherapy*, 2005; 59(4): 139-142.
- Perry JJ, Shin DS, Getzoff ED, Tainer JA. The structural biochemistry of the superoxide dismutases. *Biochimica et biophysica acta*, 2010, 1804(2): 245-262.
- Onyango AN, Baba N. New hypotheses on the pathways of formation of malondialdehyde and isofurans. *Free radical biology & medicine*, 2010, 49(10): 1594-1600.
- Gueraud F, Atalay M, Bresgen N, et al. Chemistry and biochemistry of lipid peroxidation products. *Free radical research*, 2010; 44(10): 1098-1124.
- Gebicki JM, Nauser T, Domazou A, Steinmann D, Bounds PL, Koppenol WH. Reduction of protein radicals by GSH and ascorbate: potential biological significance. *Amino acids*, 2010; **39**(5): 1131-1137.