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Plant growth promoting rhizobacteria (PGPR) are the living micro-organisms
which colonize the rhizosphere or the interior of the plant or promotes growth by increasing
the supply or availability of primary nutrients to the host plant when applied to the
seed, plant surface, or soil. Bacteria having growth promoting property in plants through
the control of deleterious organisms have been categorized as biopesticides and are
different from biofertlizers. However, some PGPR promote growth of plants by acting
both as biofertilizer and biopesticides. PGPR can be Rhizospheric or Endophytic in nature
depending upon their relationship with their hosts. The solubilization of ‘P’ in the
rhizosphere is the most common mode of action that increases nutrient availability to
host plants. Insoluble inorganic ‘P’ associated with the solid phase can be adsorbed to the
surface of soil constituents which occur as Ca, Fe or Al minerals. Mineral ‘P’ is further
released and made available to plant mostly by the action of phosphate solubilizing
micro-organisms.
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Phosphorus (P) is one of the major
nutrients to plants as well as microorganisms
second only to nitrogen in requirement. It is
involved in several physiological processes;
however, approximately 95-99% of phosphorusis
present in the soil as insoluble phosphates and
hence cannot be utilized by the plants. Organic
phosphorus constitutes a large proportion of the
total phosphorus in several soils. Inositol
phosphate (soil phytate) is the major form of
organic phosphorus in soil, and other organic P
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compounds in soil are in the form of
phosphomonoesters, phosphodiesters including
phospholipids, nucleic acids and phosphotriesters.
Plants can only utilize P in inorganic form.
Mineralization of most organic phosphorus
compound is carried out by means of phosphatase
enzymes. The major source of phosphatase activity
in soil is considered to be of the microbial origin.
To increase the availability of phosphorus for
plants, now a day’s large numbers of bacteria
known as ‘Phosphate Solubilizing Bacteria’® are
used for the conversion of soil organic phosphorus
in to the soluble inorganic forms?3. Some
phosphate solubilizing bacteria can also
accumulate heavy metals and are thus beneficial
in eradicating heavy metal Phytotoxicity and
promoting growth in plants®.
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One of the major elements is
phosphorous, largely used in membranes, cell
division, nucleic acids and high energy
compounds. Itsdeficiency issecond inimportance
next only to nitrogen, and is likely to effect the
development of roots. Leaves tend to be
undersized, erect and somewhat necrotic as well
asrelatively few lateral buds are formed. Foliage
may be red or of purple tinge. Phosphate and
potassium generally have thetendency to decrease
susceptibility. Effects of P on some important
disease have been summarized by Patil®*and Huber®.
According to them, diseases such as damping-off
of pea (Rhizoctonia solani), downy mildews of
cabbage and grapes, flag smut of wheat (Urocystic
tritici), root rot of tobacco (Thielaviopsis
basicola), root rot of soyabean (R. solani), and
take-all of wheat (Ophiobolus graminis) decrease
as aresult of phosphate application.

In this review we focused on the
acquisition of nutrients from soil by plants roots
with the help of PSB that influence the avail ability
and uptake of P with specific emphasis on their
role in disease management.

Phosphate solubilizing micr oor ganisms (PSM s)

Many soil and rhizospheric
microorganisms have the ability to release
phosphate from sparingly soluble mineral
phosphates found in soils and are important in
providing soil phosphates to plants’. Insoluble
inorganic ‘P associated with the solid phase can
be adsorbed to the surface of soil constituents
which occur as Ca, Feor Al minerals. Mineral Pis
further released and made availableto plant mostly
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by the action of phosphate solubilizing
microorganisms®. The addition of rock phosphate
significantly increased N, Pand total plant biomass
by arbuscular mycorrhizal infection®.
Phosphate solubilizing bacteria (PSB)
Phosphorusisthe second most important
nutrient after nitrogen for the growth of plantsand
microorganisms. Out of added phosphorusfertilizer
only 10-20% is available for the plants. The rest
remains in the soil as insoluble phosphate in the
form of rock phosphate and tri-cal cium phosphate.
Phosphate solubilizing Bacteria (PSB) significantly
helps in the release of this insoluble inorganic
phosphate and makes it available to the plants.
PSB are agroup of beneficial bacteria capable of
hydrolysing organic and inorganic phosphorus
from insoluble compounds. P-solubilization ability
of the microorganisms is considered to be one of
the most important traits associated with plant
phosphate nutrition. It is generally accepted that
the mechanism of mineral phosphate sol ubilization
by PSB strains is associated with the release of
low molecular weight organic acidsthrough which
their hydroxyl and carboxyl groups chelate the
cations bound to phosphate, thereby converting
itinto solubleforms. In addition, some PSB produce
phosphatase like phytase that hydrolyse organic
forms of phosphate compounds efficiently. One or
both types of PSB have been introduced to
agricultural community as phosphate‘ Biofertilizer.
Some important organic phosphate solubilizing
bacterial genera which were reported as plant
growth promoter arelisted in Tablel.

Table 1. Some important bacterial genera
which are reported as phosphate solubilizer

PSB Reference PSB Reference
Actinomycetes [82] Enterobactor [90, 87]
Agrobacterium [83] Klebsiella [91]
Arthrobacter [84] Micrococcus [92]
Azospirillum [85] Mycobacterium [93]
Azotobacter [86] Proteus [94]
Bacillus [71] Pseudomonas [95, 112]
Bradirhizobium [87] Serratia [94]
Burkholderia [88, 87] Saphylococcus [92]
Citrobactor [89] Xanthomonas [96]

J PURE APPL MICROBIO, 8(1), FEBRUARY 2014.



GUPTA et al.: ROLE OF PSB IN CROP GROWTH & DISEASE MANAGEMENT

Earlier studies have shown that soil
inoculation with phosphate solubilizing bacteria
(PSB) improves solubilization of fixed soil P and
applied phosphatesresulting in higher crop yields.
PSB are naturally found in majority of soils'®,
however, their activity is severely influenced by
the environmental factors especially under stress
conditions®?,

Phosphatic fertilizerswith available P,O,
when added to the soil, form trical cium phosphate
(TCP) in calcareous and alkaline soils, and ferrous
phosphate (FP) or ferric hydroxyl phosphate or
aluminium phosphate (AP) in acidic soil*%. Therole
of microorganisms in solubilizing insoluble
phosphates and making it availableto the plantsis
well  known!. Phosphate solubilizing
microorganisms (PSM) includes bacteria as well
asfungi. Among bacteriamost efficient phosphate
solubilizers belong to genera Bacillus and
Pseudomonas. Culturesisolated from rhizospheric
and non-rhizospheric soils solubilize phosphate
with afall in pH due to the production of organic
acids but no correlation could be established
between acidic pH and quantity of P,O, liberated.
Risein pH observed later, may be due to organic
acid produced by the organisms?®.

Phosphate sol ubilization activity wasalso
found in symbiotic nitrogenous bacterial®.
However, it wasshown that * P solubilizing activity
of microorganisms is affected by the presence of
soluble phosphate in medium. Goldstein and Liu
have shown that mineral phosphate solubilizing
activity is generally coded in a gene cluster on
plasmids of microorganisms. They also transferred
this gene cluster to E. coli strain that had not
shown ‘P’ solubilizing activity before and could
demonstrate the transferred gene expressionin the
transgenic E. coli strain*. Furthermore, the gene
expression and mineral phosphate solubilizing
activity of bacteria was affected by the presence
of soluble phosphate in medium (feedback
regulator). Regulation of the ‘P’-solubilizing
activity by the presence of soluble phosphatesin
medium was also shown in other organisms.
Chhonkar and Subba-Rao determined the ‘P’
solubilizing activity of different fungi in medium
containing soluble KH,PO,. Although the fungi
showed ahigh ‘P’ solubilizing activity in medium
without soluble phosphate, it was completely
inhibited in medium containing soluble
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phosphate®.

There are several potential mechanisms
reported for phosphate solubilization that include
modification of pH by secretion of organic acids
and protons or cation dissociation®2, A,
halopraeferans, a non glucose utilizing bacteria
does not exhibit acidity in the presence of
glucose?. Acid production is not the only reason
for P release into the media®*2* and this can be
related to the cation dissociation processes™. A
study on the molecular mechanisms would throw
light on the ps (phosphate solubilizing) genesthat
could be incorporated sustainable agriculture. A.
hal opraeferans offers traits for nitrogen fixation,
phosphate solubilization and salinity tolerance®.
Living plants can utilize only soluble inorganic
phosphorus. The transformation of mineral or
organic phosphorusinto solubleinorganic formis
brought about by microbial action. Plants utilize
this available phosphorus and transform it into
organicform (Fig.1).

The last two decades have seen a
significantly increased knowledge on phosphate
solubilizing microorganisms. The metabolic
activities of microorganisms (production of acids)
solubilize phosphate from insoluble calcium, iron
and aluminium phosphates, in addition to it
microbial degradation of organic compoundslike
nucleic acids which releases phosphates. These
biochemical changes that take place in the soil
prove that microorganisms perform numerous
essential functions that contribute to the
productivity of soil.

Conversion of organic phosphateintoinsoluble
inor ganic phosphate

Many soil microorganisms produce
enzymes (phosphatases) that decompose different
organic phosphorus compounds (nucleoproteins
and leciteins) in the soil. In this decomposition
organic phosphorus is converted into phosphoric
acid which combineswith the soil basesto produce
salts of calcium, magnesium and iron. These salts
are less soluble and thus less available to the
plants. This mineralization takes place as under:
Conversion of insolubleinor ganic phosphatesinto
solubleinor ganic phosphates

The solubility of phosphorusismobilized
by phosphoric acids. This is brought by
microorganisms such as Pseudomonas,
Mycobacterium, Micrococcus etc. These
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microorganisms produce acidslike sul phuric acid
and nitric acid which ultimately helpinmobilizing
phosphorus. The process of conversion of
insoluble phosphatesinto soluble onceisgeneraly
known as‘ solubilization’.

| solation and evaluation of phosphate solubilising
bacteria

The insoluble calcium phosphate
constitutes amajor portion of insoluble phosphate
in the soil?. Tricalcium phosphate (TCP) is
considered as a model compound for measuring
the potential or relative rates of microbial
solubilisation of insoluble inorganic phosphate
compounds. Solubilization of precipitated TCPin
unbuffered solid agar medium plates has been used
widely as the initial criterion for the isolation of
phosphate solubilising microorganisms?8,
Microorganismson preci pitated cal cium phosphate
agar produces clear zones around their coloniesif
they are capabl e of solubilizing calcium phosphate
(Fig. 2).

From serially diluted rhizosphere soil
suspension, suitabledilutions (10%) are poured and
plated on Pikovskaya' sAgar Medium comprising
glucose(10g), Ca,(PO,), (59), (NH,),SO, (0.5g), KCl
(0.29), MgSO, (0.1g), MnSO, (traces), FeSO,
(traces), Yeast Extract (0.5g), Agar (15g), Distilled
water (1L), pH (7.0). The platesarethen incubated
at 30+5°C for 48-96 h. Phosphate solubilisationis
indicated by the formation of a clear zone around
the bacterial colonies. Single bacterial colonies
having a clear solubilisation zones are isolated
separately on to fresh Pikovskaya's agar plates
and incubated at 30+5°C for 10 days. An analysis
of the MPStrait is made by measuring the zone of
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solubilisation around the growing colonies. The
solubilisation efficiency (E) of these isolates is
calculated using the following formula:
Solubilisation efficiency (E) = Solubilisation
diameter (S)/Growth diameter (G) X 100

Therelease of soluble Pfrom TCP can be
determined by the method described by Jackson?®.
Roleof PSB in plant growth

Phosphates, widely distributed in nature
inboth organic and inorganic forms, are not readily
availableto plantsin abound state®. Bacteriaare
widely distributed in the rhizosphere of tropical
and subtropical grasses and sugarcane®. Many
soil bacteria are reported to solubilize these
insoluble phosphates through various
processes?™ 22, A few reports have also indicated
the P-solubilizing activity of some nitrogen
fixers®,

Many soil bacteria such as
Pseudomonas, Rhizobium, Enterobactor, Bacillus
etc possess the ability to solubilize insoluble
inorganic phosphates and make them available to
the plants®. Production of organic acidsi.e. lactic,
gluconic, fumeric, succinic & acetic acid by these
organismsresultsin the solubilizing effect. These
organismsare also known to produce amino acids,
vitamins and growth promoting substances like
IndoleAceticAcid (IAA) and GibberellicAcid (GA),
which resultsin better growth of plants.

Addition of these phosphate solubilizing
organisms saves almost fifty per cent of
phosphorusfertilizers applied tothefields. Besides,
it also optimizes the intake of phosphorus by the
plants. Consequently, the growth and yield of a
wide variety of cropsincreases by 10-20%. Crops
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like paddy, maize, mustard, barley, oats, chick-pea,
groundnut, soybean and vegetables are some of
theimportant examples.
Azotobacter

Azotobacter, afree-living bacterium, fixes
atmospheric nitrogen and has been used asavery
effective bio-fertilizer for several non-leguminous
crops including fruits, vegetables and medicinal
plants. Azotobacter has the ability to produce
growth-promoting substances such as |AA, GA,
vitamins and cytokinins, which have a beneficial
effect on crop growth. Azotobacter is also used
for Wheat, Paddy, Maize, Barley, Jowar, Oat,
Sugarcane, Sugarbeet, Cotton, Tobacco,
Sunflower, Mustard, Potato, Brinjal, Onion,
Cauliflower, Tomato, Cabbage, Fruits, Vegetables,
flowering plants and medicinal plants®.
Rhizobium

Rhizobium is an efficient plant
rhizosphere colonizing bacteriawhichresidein the
vicinity of roots and benefit the plants through
their growth promoting excretions as well as bio-
static properties. It produces growth-promoting
substances that help plants in the optimal uptake
of nutrients and thus helps them grow efficiently.
The presence of Rhizobium in soil is also helpful
in controlling many seed-borne, air-borne and soil-
borne diseases caused by bacteria and fungus.
Rhizobium is suitable for a wide range of crops
including pulses, cereals, cash crops, medicinal
crops, fodder crops, oil crops, fruitsand vegetable
crops®.
Pseudomonas

These bacteria are widely distributed in
soil and water. Some Pseudomonas spp. arereported
as P solubilizer which solubilize the organic
phosphate compounds and play an important role
in plant growth promotion e.g. Pseudomonas
fluorescens™, P. putida® etc. Pseudomonas spp.
is reported to suppress several major plant
pathogens as well.
Azospirillum

Azospirillum is an important micro-
organism which fixes atmospheric nitrogen as an
associate symbiotic nitrogen fixing bacterium. It
secretes growth-promoting substanceslike Garlic
acid and cytokininswhich enhancetillering, growth
and vigour of the plants. Azospirillum is known
foritsN, fixing ability at a higher pace than other
micro-organisms. Azospirillum is also used for
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non-leguminous crops. It has been found to be
extremely beneficial for wheat, paddy, maize, bajra,
sugarcane, vegetables and medicinal plants®.
Interaction of phosphate solubilizing
microor ganismsand plants

In general, two phenomenatake placein
soil that makes phosphorus the least available
element to plants. One of them isimmobilization
whichiscarried out by those microorganismsthat
populate the mineral deficient regionsand require
performing their vital processes®. The other one
is precipitation or fixation to insoluble complex
minerals which is due to the union of phosphorus
with elements such asiron and aluminum in acid
soils, and calciumin alkaline soils. Thisdeniesthe
plant up to 75% of all soluble Pand thus, generates
a0.002-0.5% concentration of the mineral in the
soil*t. Thishasforced many crop growersto apply
up to four times the required amount of
phosphorous to the crop. In case of sugarcane,
this figure falls between 40 and 200 kg of
phosphorous per hectare. This procedure not only
generatesan increasein the application of chemical
fertilizers but also increases the production costs.
Production and application of bio-preparations
could thereforeimprovethe availability of soluble
phosphorus which would cause a decrease in the
use of phosphate fertilizers. This will have a
positive effect on the environment besidesthe cost
economy*,

Low organic matter coupled with low
native soil phosphorus (P) concentrationsisamajor
constraint limiting the productivity of soybean-
wheat system on Vertisolsin the Indian semi-arid
tropics. Phosphorus promotesN, fixationinlegume
crops and is vital for photosynthesis, energy
transfer and formation of sugars®. Legumesweed
high amount of Pin readily availableform around
their roots for rhizobia and the host plant. Only a
small fraction of phosphate fertilizer isutilized by
crops while remaining portion of applied P gets
fixedinthe soil and remainsunavailableto plants®.
Rock phosphate being available in plenty in the
country is a good source of P for acid soils, but
ineffectivein neutral to akaline soils*. Continuous
efforts have been made by adding ‘ P* solubilising
microorganisms to increase the efficiency of soil
having apH value of morethan 7 %3,

Pseudomonas, Bacillus, Azospirillum,
Azotobacter, Enterobacter, Klebsiellaand Serratia

J PURE APPL MICROBIO, 8(1), FEBRUARY 2014.



466

are the most frequent non-symbiotic genera
including strains with plant growth promotion
activity”®. PGPR have been studied in several
herbaceous plants such as potato, bean, soybean,
tomato, cucumber and radish*4’. Reportsare also
available on some woody plants like apple®,
citrus®, and alder®. P. agglomerans and P.
fluorescens have been found effective in
consistently enhancing development of Prunus
root stocks after irrigation with relatively diluted
bacterial suspension. This opened the possibility
of its use in commercial nurseries. The effect of
these strains on plant root stock development is
particularly important because an optimal growth
during the first year is essential for good
establishment in the field with an additional
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advantage of shortening thetimerequired for plant
production®t,
Nutrientsavailability in therhizopshere

There are ample evidences to show that
many PGPR increase the availability of nutrients
for the plants in the rhizosphere®®. The mode of
action of the PGPR involves solubilization of
available forms of nutrients and/or siderophore
production which helpsinfacilitating the transport
of certain nutrients.
Solubilization of phosphates

The solubilization of Pintherhizosphere
isthe most common mode of actionimplicated in
PGPR that increase nutrient availability to host
plants®. Most effective associations are listed in
table 2.

Table 2. List of effective associations of PGPR that increase nutrient availability to host plants

PGPR Host crop References
Azotobacter chroococcus Wheat [97]
Azospirillumbrasilense Rice [98]
Bacillus endophyticus, B. pumilus, B. subtilis, Bacillus sp. Commonbean  [99]
Enterobacter agglomerans Tomato [72]
Pseudomonas chlororphis ps. putida Soybean [55]
Pseudomonas aeruginosa Greengram [91]
Rhizobium sp.Bradyr hizobium japonicum Radish [100]
Rhizobium leguminosarumbv. Phaseoli Maize [101]

Phosphate solubilizing bacteria are
commonin rhizosphere*>. However, someof them
appear to be crop specific. Cattelan et al. found
only two out of five rhizosphere isolates positive
for ‘P’ solubilization that actually had a positive
effect on soybean seedling growth%®. This
suggested that all P solubilizing PGPR do not
increase plant growth by increasing P availability
to the hosts. A number of P solubilizing Bacillus
sp. isolates and a Xanthomonas maltophilia
isolate were found from canola (Brassica napus
L.) rhizosphere which had positive effects on plant
growth, but no effects on P content for the host
plants®. It was also found that in many plant
species, inactivation of nitrate reductase (NR) is
initiated with phosphorylation of a species seryl
residue by Ca?*/Mg?" dependent protein kinase,
followed by M g?* dependent association of 14-3-3
type inhibitor protein with phosphor-NR.
Reactivation of NR occurs after NR protein
dephosphorylation catalized by an okadaic acid
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sensitive serine/threonine phosphatase, most
probably for the type 2-A 5. This regulatory
mechanism of direct NR protein modifications has
been shown to provide a rapid regulation of NR
activity and thus to allow fast adaptation to
changing environmental conditions, such aslight,
CO,and O, availability **. Furthermoreit was also
reported that low temperature, an important
environmental factor, causes arapid activation of
NRinwinter wheat |eavesresulting from NR protein
dephosphorylation®.
Plant Growth Promotion and Microbe-Metal
Interactions

Heavy metal toxicity to plants can be
reduced by the use of plant growth promoting
bacteria, free living soil bacteria, these exert
beneficial effectson plant devel opment when they
areapplied to seed or incorporated inthe soil. There
has been a tremendous work on P-solubilizing,
metal resistant, siderophore producing and plant
growth promoting bacteria and their mutants.
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Moreover, microbial gene pool has been devel oped
which could be further exploited in heavy metal
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contaminated sites for biodegradation and plant
growth promotion purposes reported in table 3.

Table 3. List of some important bioinoculants used for biodegradation and plant growth promotion purposes

Strains Activities Crop Reference
KNP9Pseudomonas putida Sid+, Cd", Cu', Pb’, Growth Promotion Mung bean [38]

PRS 9Pseudomonas sp. Hg',Growth Promotion Soybean [102]
CRPF5,CRPF8Pseudomonas sp. ‘P Dynamics of soil Mung bean [103]
NBRI 4014Pseudomonas aeruginosa Sid+ , P+, IAA+ Soybean [104, 105]
CRPF8Pseudomonas fluorescens Sid+,Growth Promotion Mung Bean [4]

TH18 Cu','P Solubilizer Black Gram [105]
CRPF1Pseudomonas fluorescens Cold Resistant, Growth Promotion Mung Bean [106]
CRPF7Pseudomonas mutant Cold Resistant, ‘P* Solubilizers Mung Bean [103]
CD7 Metal Resistant,Osmophilic Pulses [107]
CG1 Cu','P Solubilizer Black Gram [108]
GRS1 ‘P Solubilizer & Sid+ Soybean [109]
PRS1Rhyzopertha dominica Sid*, Biocontrol Wheat [110]
PB16 Pseudomonas sp. ‘P Solubilizer black pepper [111]
PIARG-2Azospirillum sp. ‘P Solubilizer black pepper [111]

Therole of PGPR in promotion of plant
growth has widely been accepted®. A number of
possible mechanisms have been proposed
regarding activity of PGPR. These include
suppression of diseases caused by plant
pathogens®!, competition with pathogenic
microorganisms by colonizing roots®?, production
of plant-growth-regulating substances such as
indole-3-acetic acid (IAA)% and lowering of
ethylene levels in root cells*. PGPR, especially
phosphate-solubilizing and diazotrophic bacteria,
increase the availability of limited plant nutrients
such as nitrogen, phosphorus, B-vitamins and
amino acidsintherhizosphere showing their plant-
stimulatory effects™. A number of PGPR areefficient
in phytostimulation and biofertilizationand alsoin
biological control, however, there are difficulties
in obtaining successful formulationsin most cases
due to lack of sufficient knowledge on the basic
principles of their action®. Therefore, extensive
studies are required on the mechanism of their
action using molecular approaches for their
production and use at commercial level.

Gram-positive bacteria are able to form
heat and desiccation-resistant spores which can
be formulated readily into stable products and
hence offer abiological solution to theformulation
problem®. Root colonizing Bacillus and

Paenibacillus strains are well known for
enhancing the growth of plants®” ©,
Enzymesthat affect theplant growth regulation
The use of phosphate solubilizing
bacteria as inoculants simultaneously increases P
uptake by the plant and crop yield. Strains from
the genera Pseudomonas, Bacillusand Rhizobium
are among the most powerful phosphate
solubilizers. The principa mechanism for mineral
phosphate solubilization is the production of
organic acids, and acid phosphatases play amajor
role in the mineralization of organic phosphorous
in soil. Several phosphatase-encoding genes have
been cloned and characterized and a few genes
involved in mineral phosphate solubilization have
been isolated. Therefore, genetic manipulation of
phosphate-solubilizing bacteria to improve their
ability toimprove plant growth may includecloning
genes involved in both mineral and organic
phosphate solubilization, followed by their
expression in selected rhizobacterial strains.
Chromosomal insertion of these genes under
appropriate promotersis an interesting approach.
Phosphatases are generally unable to hydrolyse
phytate®®, however, a special group of
phosphomonoesterases has evolved in prokaryotic
and eukaryotic organisms that is capable of
hydrolysing phytate to aseriesof lower phosphate
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esters of myo-inositol and phosphate™. Plants
producing 3- and 6(4)-phytases display a low
activity in roots and other plant organs, and
occurrence of plant-secreted phytase within the
rhizosphere has not been documented. This
suggests that plant roots may not possess an
innate ability to acquire phosphorus directly from
soil phytate. Several PGPR are known to produce
microbia phytases which has been isolated and
characterized from afew Gram-positive and Gram-
negative soil bacteria, e.g. B. subtilis™, Bacillus
amyloliquefaciens DS11 72, Klebsiella terrigena
(Greiner et al., 1997), Pseudomonas spp. * and
Enterobacter sp.4 ™. However, possible role of
phytases in supporting plant growth under
phosphate limitation has not been reported so far.
Besides other factors, the ability of some root-
colonizing bacteriato make the phytate phosphorus
available in soil for plant nutrition under

phosphate-starvation conditions might contribute
to their plant-growth-promoting activity.
Elimination of chelate-forming phytate, known to
bind nutritionally important minerals, is another
beneficial effect due to bacterial phytase activity
in the rhizosphere®. An artificia sterile system
consisting of maize seedlings and culturefiltrates
of PGPR was used to investigate the contribution
of secreted phytasesto the plant growth promotion
by B. amyloliquefaciens™.
Roleof PSMsin plant disease management
Amendment of soil with decomposable
organic matter or plant growth promoting
microorganisms is one of the cheapest, hazard-
free and eco-friendly effective methods of
modifying soil environment. Sun and Huang had
rightly observed that continuous extensive
agricultural practices that depend heavily on use
of chemical fertilizers have resulted in loss of

Fig. 2: Zone of phosphate solubilisation around the colony growth of PSB on Pikovskaya's agar plate
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organic matter, an increase in acidity, and
accumulation of toxic elementsin cultivated soils
creating an environment favorablefor devel opment
of certain soil-born pathogens™. The reductionin
common scab of potato (S. scabies) by green
manuring through prevention of the buildup of
inoculums was the first report of organic
amendments as a means of disease suppression.
Sincethis observation of ®, numerous reports have
appeared regarding the beneficial effectsof organic
and inorganic amendments of soil.

Biocontral of phytopathogenic microor ganisms

Disease causing plant microorganisms
adversely affect the crop yields by significantly
reducing plant performance and crop quality. The
usual method for the control of such
phytopathogens is to apply chemical pesticides,
but this strategy has led to increased concerns
over environmental contamination and has aso
resulted in the development of resistance against
theindividua chemical over thetime. Thisneedsa
constant development of new pesticides”. In this
context, rhizobacteriathat can provide biocontrol
of disease or insect pests (biopesticides) are
considered an effective alternative to chemical
pesticides™. A large number of mechanisms are
involved in biocontrol and can involve direct
antagonism via production of antibiotics,
siderophores, HCN, hydrolytic enzymes
(chitinases, proteases, lipases, etc.), or indirect
mechanismsin which the biocontrol organismsact
as aprobiotic by competing with the pathogen for
a niche (infection and nutrient sites). Biocontrol
can also be mediated by activation of theacquired
systemic resistance (SAR), induced systemic
resistance (ISR) responses in plants, and by
modification of hormonal levels in the plant
tissues’™8L,

Effect of Phosphor usdeficiencies

Fruit trees and crop plants suffer
nutritional disorder due to insufficient or excess
supply of certain minerals. Antagonistic or
synergistic interactions among mineral elements
have also been observed in soil or in plant system
by several investigators.

Themacronutrients areindispensablefor
optimal growth and development and which plants
absorb primarily through roots. Phosphorusis an
important macronutrient required inlarger quantity
for normal plant growth and reproduction. Dueto

469

phosphorus deficiency plant grows poorly and the
leaves are bluish-green with purple tints. Lower
leaves sometimes turn light bronze with purple or
brown spots; shoots are short, thin upright and
spindly. These deficiencies cause a reduction in
plant growth through slower leaf production. Older
leaves exhibit marginal chlorosis along with
purplish brown flecks, which gradually increase.
Chlorosis spread inward from midrib, sometimes
leaving areas of healthy green tissues. Necrosis of
tissue leads to withering of leaves and breaking
petioles at the pseudostem. The distance between
leaves on the pseudostem is shortened giving a
‘rosette’ appearance. Younger leaves do not
exhibit symptoms.

Thus it could be suggested that there as
atremendous potential associated with microbes
having high ‘P’ solubilization activity. Moreover,
along withwild types metal resistant mutantscould
be developed for the high yield of diseasefreeand
healthy crops.
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